Search results

1 – 2 of 2
Article
Publication date: 28 March 2023

Zheqing Gong and Lijun Chen

Fluorinated silicon polymers are expected to be adopted in specific coatings to afford outstanding advantages, such as high chemical and photochemical resistance, low surface…

Abstract

Purpose

Fluorinated silicon polymers are expected to be adopted in specific coatings to afford outstanding advantages, such as high chemical and photochemical resistance, low surface tension and low refractive index. The modified acrylate resin is prepared via solution polymerization of fluorine and silicon monomers, acrylate monomers and other functional monomers. The purpose of this paper is that the fluorine and silicon monomers such as vinyltriethoxysilane (VTES) and hexafluorobutyl methacrylate (HFMA) and some cheap monomers such as styrene are used to prepare the cationic acrylic resin.

Design/methodology/approach

The fluorine and silicon modified cationic acrylic resin is prepared via solution polymerization technology, which uses butyl acrylate (BA), methyl methacrylate (MMA), styrene (St), HFMA, VTES, dimethylaminoethyl methacrylate (DMAEMA) and hydroxypropyl methacrylate (HPMA) as the co-polymerized monomers, propylene glycol monomethyl ether (PGME) as solvent and 2,2-Azo-bis-iso-butyronitrile (AIBN) as the initiator to create a resin to introduce the Si–O and C–F into the polymer chains. The cathodic electrodeposition (CED) coatings were prepared by mixing the synthetic resin and blocked isocyanate.

Findings

The influence of the amounts of HFMA and VETS on the resin and the resultant CED coatings is investigated in detail. The optimum amounts of HFMA and VETS are obtained, which is 7–8% and 4–5%, respectively. The hydrophobicity and the acid and alkaline resistance of the film are improved when VETS and HFMA are introduced to co-polymerize with other monomers.

Originality/value

The fluorine and silicon monomers such as VTES and HFMA and some cheap monomers such as styrene, which are used to prepare the cationic acrylic resin, are seldom reported in the open literature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 February 2022

Zheqing Gong, Shusen Cao, Zhibin Cai and Lijun Chen

There are three double bonds in the chemical structure of diallyl maleate. The purpose of this study is that the acrylate is modified with diallyl maleic anhydride to make the…

Abstract

Purpose

There are three double bonds in the chemical structure of diallyl maleate. The purpose of this study is that the acrylate is modified with diallyl maleic anhydride to make the propionate resin present a spatial network structure, thereby improving the performance of the acrylate resin.

Design/methodology/approach

Methyl methacrylate (MMA) and butyl acrylate(BA) were used as were used as main monomers. Diallyl maleate (DAM) was used as crosslinking monomer and dodecafluoroheptyl methacrylate (DFMA) was used as fluoromonomer. Potassium persulfate (KPS) was used as thermal decomposition initiator, sodium lauryl sulfate (AS) and sodium dodecyl sulfonate (SDS) were used as anionic emulsifiers, and EFS-470 (Alkyl alcohol polyether type nonionic emulsifier) was a non-ionic emulsifier.

Findings

Through optimizing the reaction conditions, the uniform and stable latex is obtained. The polymer of structure was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) and contact angle (CA) were tested on latex films. The particle size and distribution range of emulsion were tested with nano particle size analyzer.

Originality/value

The experimental results showed that the thermal decomposition temperature of the acrylic coating film increased by 20.56°C after modification. In addition, the effect of cross-linking density on the water contact angle of the fluorocarbon groups in DFMA when they migrate to the surface of the latex film during drying has been explored. The experimental results show that a higher degree of cross-linking will hinder the migration of fluorocarbon groups to the surface of the resin film.

1 – 2 of 2