Search results

1 – 9 of 9
Article
Publication date: 11 June 2020

Laiming Yu, Tianqi Zhang, Wenjun Wang, Yubing Dong and Yaqin Fu

This study aims to discuss the effect of carbon fiber on the electric-respone of shape memory epoxy property. Epoxy (EP) is a typical excellent thermosetting shape memory polymer…

Abstract

Purpose

This study aims to discuss the effect of carbon fiber on the electric-respone of shape memory epoxy property. Epoxy (EP) is a typical excellent thermosetting shape memory polymer (SMP). To enrich the shape memory epoxy (SMEP) responsive mode, the carbon fiber fabric-reinforced SMEP composites were prepared, and the mechanical properties and the electric- and light-responsive shape memory effect of the composites were investigated and confirmed.

Design/methodology/approach

The carbon fiber fabric/SMEP composites were prepared via a dipping method. The carbon fiber fabric was dipped into the waterborne epoxy emulsion and dried at room temperature and then post-cured in the oven at 120 °C for 2 h. The mechanical properties and the multi-responsive shape memory properties of the composites were tested and confirmed via tensile test instrument, DC electrical source and near-infrared (NIR) laser source control system.

Findings

The carbon fiber fabric/SMEP composites showed excellent electric- and light-responsive shape memory effect.

Research limitations/implications

High performance and multi-responsive shape memory materials have always been the goal of the scientists. Carbon fiber fabric and SMEP both consist of a good reputation in the field of composites, and the combination of both would set a solid foundation for getting a high performance and multi-responsive shape memory effect materials, which will enrich the responsive mode and broaden the application of SMEP.

Originality/value

Multi-responsive SMEP composites were prepared from waterborne epoxy and carbon fiber fabric.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 March 2022

Xinyu Chen, Wenjun Wang, Shuaijie Chen and Yubing Dong

This paper aims to study the effect of microcrystalline cellulose (MCC) on the mechanical property and shape memory property of water-borne epoxy (WEP).

Abstract

Purpose

This paper aims to study the effect of microcrystalline cellulose (MCC) on the mechanical property and shape memory property of water-borne epoxy (WEP).

Design/methodology/approach

In the present study, the MCC/WEP composites were successfully prepared by melt-blending, freeze-drying and hot-pressing. The mechanical property tests were performed using a tensile test instrument (Instron Corp, Norwood, Massachusetts, USA). dynamic mechanical analysis Q800 was performed to analyze the sample’s dynamic mechanics. The thermal–mechanical cycle tests performed on a thermal mechanical analysis (TMA) Q400 in dynamic TMA mode enabled to analysis of the shape memory properties of the MCC/WEP composites.

Findings

The results showed that the inclusion of 2 wt.% MCC led to significant improvements in tensile strength and modulus of the composites, with tensile strength increasing by 33.2% and modulus expanding by 65.0%. Although the inclusion of the MCC into WEP enhanced the shape memory property, the MCC/WEP composites still maintained good shape memory fixity and shape memory recovery ratio of more than 95.0%.

Originality/value

This study has a significant reference value for improving the mechanical properties of WEP and other water-borne shape memory polymers.

Details

Pigment & Resin Technology, vol. 51 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Yubing Dong, Chen Qian, Jian Lu and Yaqin Fu

Epoxy (EP) and polye-caprolactone (PCL) are typical dual-shape memory polymer (DSMP). To get excellent triple-shape memory effect (TSME) polymer composites which are made from EP…

Abstract

Purpose

Epoxy (EP) and polye-caprolactone (PCL) are typical dual-shape memory polymer (DSMP). To get excellent triple-shape memory effect (TSME) polymer composites which are made from EP and PCL. Miscible PCL/EP blend composites have been investigated and compared to the TSMEs with electrospun PCL microfiber membranes/EP composites. Clay montmorillonite (MMT)-modified electrospun PCL microfiber membranes were prepared to improve the shape memory fixities of electrospun PCL microfiber membranes/EP composites.

Design/methodology/approach

The morphologies of electrospun PCL microfiber membranes and the cross section of PCL/EP composites were studied using a field emission scanning electron microscope (FE-SEM), and the existence of MMT was confirmed by a transmission electron microscope. Thermal mechanical properties were observed by a differential scanning calorimeter (DSC) and a dynamic thermomechanical analysis machine, and the TSMEs were also determined through dynamic mechanical analysis.

Findings

Results indicate that the TSMEs of electrospun PCL microfiber membranes/EP composites were excellent, whereas the TSMEs of PCL/EP blend composites were poor. The TSMEs of PCL electrospun microfiber membranes/EP composites significantly improved with the addition of the PCL electrospun microfiber modified with moderate MMT.

Research limitations/implications

Adding a moderate content of MMT into the electrospun PCL fibers, could improve the TSME of the PCL fiber membranes/EP composites. This study was to create a simple and effective method that can be applied to improve the performance of other SMP.

Originality/value

A novel triple-shape memory composite were made from dual-shape memory EP and electrospun PCL fiber membranes.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 April 2024

Fukang Yang, Wenjun Wang, Yongjie Yan and YuBing Dong

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to…

Abstract

Purpose

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to improve the thermal insulation performance of polyethylene terephthalate (PET), the SiO2 aerogel/PET composites slices and fibers were prepared, and the effects of the SiO2 aerogel on the morphology, structure, crystallization property and thermal conductivity of the SiO2 aerogel/PET composites slices and their fibers were systematically investigated.

Design/methodology/approach

The mass ratio of purified terephthalic acid and ethylene glycol was selected as 1:1.5, which was premixed with Sb2O3 and the corresponding mass of SiO2 aerogel, and SiO2 aerogel/PET composites were prepared by direct esterification and in-situ polymerization. The SiO2 aerogel/PET composite fibers were prepared by melt-spinning method.

Findings

The results showed that the SiO2 aerogel was uniformly dispersed in the PET matrix. The thermal insulation coefficient of PET was significantly reduced by the addition of SiO2 aerogel, and the thermal conductivity of the 1.0 Wt.% SiO2 aerogel/PET composites was reduced by 75.74 mW/(m · K) compared to the pure PET. The thermal conductivity of the 0.8 Wt.% SiO2 aerogel/PET composite fiber was reduced by 46.06% compared to the pure PET fiber. The crystallinity and flame-retardant coefficient of the SiO2 aerogel/PET composite fibers showed an increasing trend with the addition of SiO2 aerogel.

Research limitations/implications

The SiO2 aerogel/PET composite slices and their fibers have good thermal insulation properties and exhibit good potential for application in the field of thermal insulation, such as warm clothes. In today’s society where the energy crisis is becoming increasingly serious, improving the thermal insulation performance of PET to reduce energy loss will be of great significance to alleviate the energy crisis.

Originality/value

In this study, SiO2 aerogel/PET composite slices and their fibers were prepared by an in situ polymerization process, which solved the problem of difficult dispersion of nanoparticles in the matrix and the thermal conductivity of PET significantly reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 April 2023

Laiming Yu, Yaqin Fu and Yubing Dong

The purpose of this study is to improve the mechanical property and processing performance and reduce the cost of the polylacticacid/polybutyleneadipate-co-terephthalate(PLA/PBAT…

Abstract

Purpose

The purpose of this study is to improve the mechanical property and processing performance and reduce the cost of the polylacticacid/polybutyleneadipate-co-terephthalate(PLA/PBAT) composites, the calcium carbonate (CaCO3) and compatibilizer styrene-maleicanhydride copolymer (SMA-2025) were added to the PLA/PBAT system, and the effect of CaCO3 and SMA-2025 on the morphology, structure, mechanical property, thermal property, thermalstability and shape memory property of the CaCO3/PLA/PBAT composites were studied and discussed.

Design/methodology/approach

The CaCO3/PLA/PBAT shape memory composites were prepared via melt-blending and hot-pressing methods, and the effect of CaCO3 and SMA-2025 on the property of the composites was investigated via scanning electron microscope, universal testing instrument, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis and DMA, respectively.

Findings

The interface property, mechanical property, thermal stability, shape memory recovery ratios and recovery stresses, and processing performance of the CaCO3/PLA/PBAT shape memory composites were significantly improved by adding of CaCO3 and SMA-2025. Moreover, the CaCO3/PLA/PBAT composites have good blowing film processing performance.

Originality/value

This study will provide a reference for the research, processing and application of the high-performance CaCO3/PLA/PBAT shape memory composites.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 November 2022

Laiming Yu, Yaqin Fu and Yubing Dong

The purpose of this study is to investigate the thermomechanical condition on the shape memory property of Polybutylene adipate-co-terephthalate (PBAT). PBAT is a widely…

Abstract

Purpose

The purpose of this study is to investigate the thermomechanical condition on the shape memory property of Polybutylene adipate-co-terephthalate (PBAT). PBAT is a widely researched and rapidly developed biodegradable copolyester. In a tensile test, we found that the fractured PBAT samples had a heat-driven shape memory effect which piqued our interest, and it will lay a foundation for the application of PBAT in new fields (such as heat shrinkable film).

Design/methodology/approach

The shape memory effect of PBAT and the effect of the thermomechanical condition on its shape memory property were confirmed and systematically investigated by a thermal mechanical analyzer and tensile machine.

Findings

The results showed that the PBAT film had broad shape memory transform temperature and exhibited excellent thermomechanical stability and shape memory properties. The shape memory fixity ratio (Rf) of the PBAT films was increased with the prestrain temperature and prestrain, where the highest Rf exceeded 90%. The shape memory recovery ratio (Rr) of the PBAT films was increased with the shape memory recovery temperature and decreased with the prestrain value, and the highest Rr was almost 100%. Moreover, the PBAT films had high shape memory recovery stress which increased with the prestrain value and decreased with the prestrain temperature, and the highest shape memory recovery stress can reach 7.73 MPa.

Research limitations/implications

The results showed that PBAT had a broad shape memory transform temperature, exhibited excellent thermomechanical stability and shape memory performance, especially for the sample programmed at high temperature and had a larger prestrian, which will provide a reference for the design, processing and application of PBAT-based heat shrinkable film and smart materials.

Originality/value

This study confirmed and systematically investigated the shape memory effect of PBAT and the effect of the thermomechanical condition on the shape memory property of PBAT.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 August 2022

Wenjun Wang, Luting Shen, Yinsong Si, Islam MD Zahidul, Azim Abdullaev and Yubing Dong

Sodium alginate (Na-Alg) is a natural polysaccharide with a rich and renewable production that is widely used in the food, pharmaceutical and daily necessities industries, among…

Abstract

Purpose

Sodium alginate (Na-Alg) is a natural polysaccharide with a rich and renewable production that is widely used in the food, pharmaceutical and daily necessities industries, among other fields. The purpose of this study is to obtain a green and degradable shape memory material, calcium alginate (Ca-Alg) film was prepared and the mechanical properties, the shape memory effect of the film were investigated and confirmed.

Design/methodology/approach

The Ca-Alg films were prepared by Na-Alg, calcium chloride (CaCl2) solution, and flow extension method. Dissolve sodium alginate powder, remove bubbles, pour into petri dish, dry at 60°C, add calcium chloride solution cross-linking and finally dry naturally. The effect of CaCl2 solution concentration on the mechanical properties of the films were investigated and discussed by universal tensile tester. The shape memory behavior and degradation performance of thin films were verified and studied by the fold-deploy shape memory test and soil embedding method, respectively.

Findings

The Ca-Alg films exhibited good mechanical and shape memory properties, with a 72.2% shape memory fixity ratio and a 92.3% shape memory recovery ratio, respectively. For a period of 120 days, the film treated with a 6 wt% CaCl2 solution degraded at a rate of approximately 53%.

Research limitations/implications

Shape memory polymers (SMPs) as intelligent materials are an important research direction for the development of modern high-tech materials. On the other hand, plastic pollution is a major problem today; as a result, preparing green degradable SMPs is essential.

Originality/value

This study synthesized transparent and degradable shape memory Ca-Alg films using Na-Alg and CaCl2 solution and the flow extension method.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 March 2021

Zuopeng (Justin) Zhang, Praveen Ranjan Srivastava, Prajwal Eachempati and Yubing Yu

The paper aims to identify the most supply chain resilient company suitable for the customized preferences of partner firms in the context of the Chinese supply chain framework…

1362

Abstract

Purpose

The paper aims to identify the most supply chain resilient company suitable for the customized preferences of partner firms in the context of the Chinese supply chain framework during the COVID-19 pandemic.

Design/methodology/approach

A hybrid multicriteria model, i.e. Fuzzy Analytical Hierarchy Process (AHP), was used to assign weights to each criterion, which was subsequently analyzed by three approaches, namely Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Fuzzy DEMATEL (Decision-Making Trial and Evaluation Laboratory), and Evaluation Based on Distance from Average Solution (EDA), to rank the top ten companies in descending order of supply chain resilience. Further, sensitivity analysis is performed to identify the consistency in ranking with variation in weights. The rankings are validated by a novel Ensemble Ranking algorithm and by supply chain domain experts.

Findings

The rankings suggest the company “China Energy Construction Group Tianjin Electric Power Construction Co., Ltd” is the most feasible and resilient company, presenting interesting findings to partner firms, and Bosch is the least reliable supply chain company of the ten firms considered, thus presenting interesting findings to partner companies.

Practical implications

“Crisis Management Beforehand” is most critical in the current pandemic scenario. This implies that companies need to first prioritize taking proactive steps in crisis management followed by the need to minimize the “Expected impact of pandemic.” Performance factors also need to be regulated (sales, supply chain rank and financial performance) to maintain the company's overall reputation. Considering the consistent performance of the China Energy Construction Group Tianjin Electric Power Construction Co., Ltd., it is recommended as the most reliable supply chain firm to forge strategic partnerships with other supply chain stakeholders like suppliers and customers. On the other hand, Bosch is not recommended as a supply chain reliable company and needs to improve its crisis management capabilities to minimize the pandemic impact.

Originality/value

The paper aims to identify the most supply chain resilient company suitable for the customized preferences of partner firms in the context of the Chinese supply chain framework during the COVID-19 pandemic. The rankings suggest the company “China Energy Construction Group Tianjin Electric Power Construction Co., Ltd” is the most feasible and resilient company, presenting interesting findings to partner firms, and Bosch is the least reliable supply chain company of the ten firms considered, thus presenting interesting findings to partner companies.

Details

The International Journal of Logistics Management, vol. 34 no. 2
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 24 April 2024

Yubing Yu, Hongyan Zeng and Min Zhang

Manufacturers increasingly resort to digital transformation to shape their competitiveness in the digital economy era, while supply chain (SC) collaborative innovation helps them…

Abstract

Purpose

Manufacturers increasingly resort to digital transformation to shape their competitiveness in the digital economy era, while supply chain (SC) collaborative innovation helps them cope with market uncertainties. However, whether and how digital transformation can facilitate SC collaborative innovation remain unclear. To address this gap, we aims to investigate the effects of digital transformation (strategy and capability) on SC collaborative (process and product) innovation and market performance.

Design/methodology/approach

We use partial least squares-structural equation modelling (PLS-SEM) with a sample of 210 Chinese manufacturers to investigate the effects of digital transformation (strategy and capability) on SC collaborative (process and product) innovation and market performance.

Findings

The results show that digital strategy and capability positively impact SC collaborative process and product innovation, which enhances market performance. In addition, SC collaborative innovation mediates the relationship between digital transformation and market performance.

Originality/value

This study contributes to the literature by identifying how digital transformation drives SC collaborative innovation towards improving market performance and providing practical guidance for enterprises in promoting digital transformation and SC collaborative innovation.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

1 – 9 of 9