Search results

1 – 9 of 9
Article
Publication date: 5 April 2024

Zhe Liu, Yichen Yang and Xiuchen Wang

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily…

Abstract

Purpose

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily shield electromagnetic waves through reflection, which can lead to the formation of resonance effects that severely compromise their protective capabilities and potentially cause secondary electromagnetic pollution in the external environment.

Design/methodology/approach

In this paper, carbon nanotube fibers are added via spacing method to replace some stainless-steel fibers to impart absorbing properties to stainless-steel EMS fabric. The shielding effectiveness (SE) of the EMS fabrics across various polarization directions is analyzed. Additionally, a spacing arrangement for the carbon nanotube fibers is designed. The EMS fabric with carbon nanotube fibers is manufactured using a semi-automatic sample loom, and its SE is tested using a small window method test box in both vertical and horizontal polarization directions.

Findings

According to the experimental data and electromagnetic theory analysis, it is determined that when the spacing between the carbon nanotube fibers is less than a specific distance, the SE of the stainless-steel EMS fabric significantly improves. The fabric exhibits stable absorbing properties within the tested frequency range, effectively addressing the issue of secondary damage that arises from relying solely on reflective shielding. Conversely, as the spacing between the carbon nanotube fibers exceeds this distance, the SE diminishes. Notably, the SE in the vertical polarization direction is substantially higher than that in the horizontal polarization direction at the same frequency.

Originality/value

This study provides a new path for the development of high-performance EMS fabrics with good wave-absorption characteristics and SE.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 November 2023

Libiao Bai, Mengqin Yang, Tong Pan and Yichen Sun

Selecting and scheduling optimal project portfolio simultaneously is a complex decision-making problem faced by organizations to realize the strategy. However, dynamic synergy…

Abstract

Purpose

Selecting and scheduling optimal project portfolio simultaneously is a complex decision-making problem faced by organizations to realize the strategy. However, dynamic synergy relationships among projects complicate this problem. This study aims at constructing a project portfolio selection and scheduling (PPSS) model while quantifying the dynamic synergetic effects to provide decision support for managing PPSS problems.

Design/methodology/approach

This study develops a mathematical model for PPSS with the objective of maximal project portfolio benefits (PPBs). To make the results align with the strategy, comprehensive PPBs are divided into financial and non-financial aspects based on the balanced scorecard. Then, synergy benefits evolve dynamically in the time horizon, and system dynamics is employed to quantify them. Lastly, a case example is conducted to verify the applicability of the proposed model.

Findings

The proposed model is an applicable model for PPSS while incorporating dynamic synergy. It can help project managers obtain the results that which project should be selected and when it should start while achieving optimal PPBs.

Originality/value

This study complements prior PPSS research in two aspects. First, financial and non-financial PPBs are designed as new criteria for PPSS, making the results follow the strategy. Second, this study illuminates the dynamic characteristic of synergy and quantifies the synergetic effect. The proposed model provides insights into managing a PPSS effectively.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 5 April 2024

Yichen Zhou and Lisa Gao

This study aims to examine how consumers’ propensity to purchase imported wines is influenced by their attitudes and perceptions toward the countries of origin (COO) of those…

Abstract

Purpose

This study aims to examine how consumers’ propensity to purchase imported wines is influenced by their attitudes and perceptions toward the countries of origin (COO) of those wines.

Design/methodology/approach

The questionnaires were distributed online and 298 valid completed questionnaires were received. This study measured the perception of the wines’ countries of origin by adopting two independent dimensions of competence and warmth in the stereotype content model.

Findings

The results show a relationship between the purchase intention and the perception of the country of origin of the wine. Furthermore, the perceived image of the country of origin impacts the brand image of the wine and the quality of wine from its country of origin.

Research limitations/implications

This study’s questionnaire was distributed online. Future research would benefit from in-depth qualitative investigation and a wider range of sample sizes across countries.

Practical implications

The results of this study guide imported wine companies in product marketing design and advertising. By promoting the countries of origin of premium wines to target consumers, trust in the quality of imported wine can be improved, thereby increasing consumers’ purchase intention.

Originality/value

This study contributes to the understanding of consumer perception of the country of origin in the context of wine marketing. It provides valuable implications for wine companies’ marketing positioning and strategy, benefiting wine marketers, distributors and importers.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 29 January 2024

Libiao Bai, Xiaoyan Xie, Yichen Sun, Xue Qu and Xiao Han

Assessing project criticality in a project portfolio (PP) is of great practical significance to improve robustness from damage. While project criticality assessment has increased…

Abstract

Purpose

Assessing project criticality in a project portfolio (PP) is of great practical significance to improve robustness from damage. While project criticality assessment has increased diversity in approaches, the understanding of vulnerable project impacts is still limited. To promote a better understanding of assessing project criticality, a vulnerability measurement model is constructed.

Design/methodology/approach

First, integrating the tasks, projects and corresponding relationships among them, a project portfolio network (PPN) is constructed. Second, the project's vulnerability is measured by combining the topological structure and functional attributes. Third, project criticality is assessed by the vulnerability measurement results. Lastly, the proposed model is applied in a numerical example to illustrate its suitability and effectiveness.

Findings

For academia, this study provides a novel perspective on project vulnerability measurement and expands project criticality assessment tools. For practitioners, the straightforward model provides an effective tool for assessing project criticality and contributes to enhancing project portfolio management (PPM).

Originality/value

The impact of the task on the project is considered in this study. Topological structure and functional attributes are also integrated for measuring project vulnerability due to the impact of random attacks in an uncertain environment, providing a new perspective on the requirements of project criticality assessment and the measurement of project vulnerability.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 February 2024

Wenhai Tan, Yichen Zhang, Yuhao Song, Yanbo Ma, Chao Zhao and Youfeng Zhang

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion…

26

Abstract

Purpose

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion batteries due to their high theoretical capacity, simple synthesis, low cost and environmental friendliness. Many studies were concentrated on the synthesis, design and doping of cathodes, but the effect of process parameters on morphology and performance was rarely reported.

Design/methodology/approach

Herein, Co3O4 cathode material based on carbon cloth (Co3O4/CC) was prepared by different temperatures hydrothermal synthesis method. The temperatures of hydrothermal reaction are 100°C, 120°C, 130°C and 140°C, respectively. The influence of temperatures on the microstructures of the cathodes and electrochemical performance of zinc ion batteries were investigated by X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry curve, electrochemical charging and discharging behavior and electrochemical impedance spectroscopy test.

Findings

The results show that the Co3O4/CC material synthesized at 120°C has good performance. Co3O4/CC nanowire has a uniform distribution, regular surface and small size on carbon cloth. The zinc-ion battery has excellent rate performance and low reaction resistance. In the voltage range of 0.01–2.2 V, when the current density is 1 A/g, the specific capacity of the battery is 108.2 mAh/g for the first discharge and the specific capacity of the battery is 142.6 mAh/g after 60 charge and discharge cycles.

Originality/value

The study aims to investigate the effect of process parameters on the performance of zinc-ion batteries systematically and optimized applicable reaction temperature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 January 2024

Xiaoxuan Lin, Xiong Sang, Yuyan Zhu and Yichen Zhang

This paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate…

Abstract

Purpose

This paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate immersed in the lubricants.

Design/methodology/approach

Nano-AlN or nano-Al2O3 (0.1, 0.2, 0.3, 0.4 and 0.5 Wt.%) functional fluids were prepared. Their tribological properties were tested by an MRS-10A four-ball friction tester and a ball-on-plate configuration, and scanning electron microscope observed the worn surface of the plate.

Findings

An increase in nano-AlN and Al2O3 content enhances the extreme pressure and anti-wear performance of the lubricant. The best performance is achieved at 0.5 Wt.% of nano-AlN and 0.3 Wt.% of nano-Al2O3 with PB of 834 N and 883 N, a coefficient of friction (COF) of approximately 0.07 and 0.06, respectively. Furthermore, the inclusion of nano-AlN and nano-Al2O3 particles in the lubricant enhances its extreme pressure performance and reduces wear, leading to decreased wear spot depth. The lubricating effect of the nano-Al2O3 lubricant on the surface of the copper-steel composite plate is slightly superior to that of the nano-AlN lubricant, with a COF reaching 0.07. Both lubricants effectively fill and lubricate the holes on the surface of the copper-steel composite plate.

Originality/value

AlN and Al2O3 as water-based lubricants have excellent lubrication performance and can reduce the COF. It can provide some reference for the practical application of nano-water-based lubricants.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0255/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 September 2021

Muhammad Ikram, Yichen Shen, Marcos Ferasso and Idiano D’Adamo

This study aims to explore the effects of the COVID-19 outbreak on exports of goods and services, logistics performance, environmental management system (ISO 14001) certification…

1571

Abstract

Purpose

This study aims to explore the effects of the COVID-19 outbreak on exports of goods and services, logistics performance, environmental management system (ISO 14001) certification and quality management system (ISO 9001) certification in top affected Asian countries of India, Iran, Indonesia, Philippines, Bangladesh and Pakistan.

Design/methodology/approach

A novel grey relational analysis models’ approach is used to examine the inter-relationship between COVID-19 economic growth and environmental performance. Moreover, the authors applied a conservative (maximin) model to investigate which countries have the least intensifying affected among all of the top affected COVID-19 Asian countries based on the SS degree of grey relation values. The data used in this study was collected from multiple databases during 2020 for analysis.

Findings

Results indicate that the severity of COVID-19 shows a strong negative association and influence of COVID-19 on the exportation of goods and services, logistics performance, ISO 9001 and ISO 14001 certifications in all the six highly affected countries during a pandemic outbreak. Although the adverse effects of COVID-19 in exporting countries persisted until December 31, 2020, their magnitude decreased over time in Indonesia and Pakistan. During the COVID-19 outbreak, Pakistan showed comparatively better performance among the six top highly affected Asian countries due to its smart locked down strategy and prevents its economy from severe damages. While India and Iran export drastically go down due to a rapid increase in the number of COVID-19 cases and deaths.

Research limitations/implications

The research findings produce much-required policy suggestions for leaders, world agencies and governments to take corrective measures on an emergent basis to prevent the economies from more damages and improve their logistics, environmental and quality performance during the pandemic of COVID-19.

Originality/value

This study develops a framework and investigates the intensifying effects of COVID-19 effects on economic growth, logistics performance, environmental performance and quality production processes.

Details

Journal of Asia Business Studies, vol. 16 no. 3
Type: Research Article
ISSN: 1558-7894

Keywords

Article
Publication date: 3 August 2020

Yichen Qin, Hoi-Lam Ma, Felix T.S. Chan and Waqar Ahmed Khan

This paper aims to build a novel model and approach that assist an aircraft MRO procurement and overhaul management problems from the perspective of aircraft maintenance service…

Abstract

Purpose

This paper aims to build a novel model and approach that assist an aircraft MRO procurement and overhaul management problems from the perspective of aircraft maintenance service provider, in order to ensure its smoothness maintenance activities implementation. The mathematical model utilizes the data related to warehouse inventory management, incoming customer service planning as well as risk forecast and control management at the decision-making stage, which facilitates to alleviate the negative impact of the uncertain maintenance demands on the MRO spare parts inventory management operations.

Design/methodology/approach

A stochastic model is proposed to formulate the problem to minimize the impact of uncertain maintenance demands, which provides flexible procurement and overhaul strategies. A Benders decomposition algorithm is proposed to solve large-scale problem instances given the structure of the mathematical model.

Findings

Compared with the default branch-and-bound algorithm, the computational results suggest that the proposed Benders decomposition algorithm increases convergence speed.

Research limitations/implications

The results among the same group of problem instances suggest the robustness of Benders decomposition in tackling instances with different number of stochastic scenarios involved.

Practical implications

Extending the proposed model and algorithm to a decision support system is possible, which utilizes the databases from enterprise's service planning and management information systems.

Originality/value

A novel decision-making model for the integrated rotable and expendable MRO spare parts planning problem under uncertain environment is developed, which is formulated as a two-stage stochastic programming model.

Details

Industrial Management & Data Systems, vol. 120 no. 9
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 16 April 2024

Shuyuan Xu, Jun Wang, Xiangyu Wang, Wenchi Shou and Tuan Ngo

This paper covers the development of a novel defect model for concrete highway bridges. The proposed defect model is intended to facilitate the identification of bridge’s…

Abstract

Purpose

This paper covers the development of a novel defect model for concrete highway bridges. The proposed defect model is intended to facilitate the identification of bridge’s condition information (i.e. defects), improve the efficiency and accuracy of bridge inspections by supporting practitioners and even machines with digitalised expert knowledge, and ultimately automate the process.

Design/methodology/approach

The research design consists of three major phases so as to (1) categorise common defect with regard to physical entities (i.e. bridge element), (2) establish internal relationships among those defects and (3) relate defects to their properties and potential causes. A mixed-method research approach, which includes a comprehensive literature review, focus groups and case studies, was employed to develop and validate the proposed defect model.

Findings

The data collected through the literature and focus groups were analysed and knowledge were extracted to form the novel defect model. The defect model was then validated and further calibrated through case study. Inspection reports of nearly 300 bridges in China were collected and analysed. The study uncovered the relationships between defects and a variety of inspection-related elements and represented in the form of an accessible, digitalised and user-friendly knowledge model.

Originality/value

The contribution of this paper is the development of a defect model that can assist inexperienced practitioners and even machines in the near future to conduct inspection tasks. For one, the proposed defect model can standardise the data collection process of bridge inspection, including the identification of defects and documentation of their vital properties, paving the path for the automation in subsequent stages (e.g. condition evaluation). For another, by retrieving rich experience and expert knowledge which have long been reserved and inherited in the industrial sector, the inspection efficiency and accuracy can be considerably improved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 9 of 9