Search results

1 – 10 of 12
Article
Publication date: 3 May 2023

Xiao Wang, Xuan Liang, Bo Wang, Chang-qing Guo, Shan-gui Zhang, Kai Yang, Shi-ya Shao, Yan Sun, Zheng Guo, Xue-yan Yu, Donghai Zhang, Tai-jiang Gui, Wei Lu, Ming-liang Sun and Rui Ding

The purpose of this study is to evaluate the effect of graphene, basalt flakes and their synergy on the corrosion resistance of zinc-rich coatings. As the important heavy-duty…

Abstract

Purpose

The purpose of this study is to evaluate the effect of graphene, basalt flakes and their synergy on the corrosion resistance of zinc-rich coatings. As the important heavy-duty anticorrosion coatings, zinc-rich coatings provided cathodic protection for the substrate. However, to ensure cathodic protection, a large number of zinc powder made the penetration resistance known as the weakness of zinc-rich coatings. Therefore, graphene and basalt flakes were introduced into zinc-rich coatings to coordinate its cathodic protection and shielding performance.

Design/methodology/approach

Three kinds of coatings were prepared; they were graphene modified zinc-rich coatings, basalt flakes modified zinc-rich coatings and graphene-basalt flakes modified zinc-rich coatings. The anticorrosion behavior of painted steel was studied by using the electrochemical impedance spectroscopy (EIS) technique in chloride solutions. The equivalent circuit methods were used for EIS analysis to obtain the electrode process structure of the coated steel system. Simultaneously, the corrosion resistance of the three coatings was evaluated by water resistance test, salt water resistance test and salt spray test.

Findings

The study found that the addition of a small amount of graphene and basalt flakes significantly improved the anticorrosion performance of coatings by enhancing their shielding ability against corrosive media and increasing the resistance of the electrochemical reaction. The modified coatings exhibited higher water resistance, salt water resistance and salt spray resistance. The graphene-basalt flakes modified zinc-rich coatings demonstrated the best anticorrosion effect. The presence of basalt scales and graphene oxide in the coatings significantly reduced the water content and slowed down the water penetration rate in the coatings, thus prolonging the coating life and improving anticorrosion effects. The modification of zinc-rich coatings with graphene and basalt flakes improved the utilization rate of zinc powder and the shielding property of coatings against corrosive media, thus strengthening the protective effect on steel structures and prolonging the service life of anticorrosion coatings.

Originality/value

The significance of developing graphene-basalt flakes modified zinc-rich coatings lies in their potential to offer superior performance in corrosive environments, leading to prolonged service life of metallic structures, reduced maintenance costs and a safer working environment. Furthermore, such coatings can be used in various industrial applications, including bridges, pipelines and offshore structures, among others.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 August 2020

Huimin Liu, Yanru Yu, Yuxing Sun and Xue Yan

The owners of mega projects typically assemble multiple academic research units and enterprises to form an innovation alliance, which carries out knowledge transfer and knowledge…

Abstract

Purpose

The owners of mega projects typically assemble multiple academic research units and enterprises to form an innovation alliance, which carries out knowledge transfer and knowledge creation targeting technical challenges in the process of engineering construction. Due to high technical and management complexity of mega projects, factors affecting knowledge transfer among innovation subjects are complex and diverse. This study proposes a mixed system dynamics (SD) method to build and simulate the process of knowledge transfer in mega projects innovation and analyzes the driving mechanism that enhances knowledge stock of enterprises and engineering innovation results.

Design/methodology/approach

First, this paper proposes a conceptual model for knowledge transfer in mega projects by adopting event analysis of the data gained from investigations and interviews. Then, a qualitative model of knowledge transfer that considers mutual influences of the owner, academic research unit and enterprises is developed. Based on that, mathematical relationship among variables of the qualitative model is determined and a quantitative model of knowledge transfer that considers heterogeneity of knowledge sender is built. Finally, simulation is achieved using Vensim software.

Findings

The factors affecting knowledge stock of enterprises are analyzed from three aspects: (1) the individual motives and capability of academic research units and enterprises; (2) the gap between academic research units and enterprises; (3) the heterogeneity of academic research units. The results show that the willingness and capability of knowledge reception by enterprises, specific knowledge transfer context such as relational distance and organization distance between academic research units and enterprises and academic research units with high knowledge stock have key influences on the knowledge stock of enterprises.

Research limitations/implications

Factors affecting knowledge transfer within the alliance of innovation in mega projects and their correlations are highly complicated and difficult to determine. Despite massive investigations and interviews on many long-span bridges in China in this study, it is barely possible to directly obtain accurate data for all variables in the model. Limitations of historical data result in limitations on applications of the proposed model.

Practical implications

By building the mega projects knowledge transfer model and conducting simulation analysis, this paper has generated practical values for the owners of mega projects on fostering, organizing, coordinating and managing of innovations. Especially, this study provides specific strategies and suggestions on selection of innovation subjects, motivation and guaranteed efficiency of knowledge transfer and knowledge creation of academic research units and enterprises.

Originality/value

This study proposes a conceptual model for factors affecting knowledge transfer that applies to innovations in mega project context, which fills the gap in the research of knowledge management in mega project innovations. Additionally, combining with the method of SD, the unique role of owner in knowledge transfer of mega projects and the differences among various knowledge senders and their influences on knowledge stocks of enterprises are thoroughly considered, and the research method of modeling and simulation of knowledge transfer mechanism is supplemented and extended.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 February 2024

Xue-Yan Wu and Xujin Pu

Collaborative emission reduction among supply chain members has emerged as a new trend to achieve climate neutrality goals and meet consumers’ low-carbon preferences. However…

Abstract

Purpose

Collaborative emission reduction among supply chain members has emerged as a new trend to achieve climate neutrality goals and meet consumers’ low-carbon preferences. However, carbon information asymmetry and consumer mistrust represent significant obstacles. This paper investigates the value of blockchain technology (BCT) in solving the above issues.

Design/methodology/approach

A low-carbon supply chain consisting of one supplier and one manufacturer is examined. This study discusses three scenarios: non-adoption BCT, adoption BCT without sharing the supplier’s carbon emission reduction (CER) information and adoption BCT with sharing the supplier’s CER information. We analyze the optimal decisions of the supplier and the manufacturer through the Stackelberg game, identify the conditions in which the supplier and manufacturer adopt BCT and share information from the perspectives of economic and environmental performance.

Findings

The results show that adopting BCT benefits supply chain members, even if they do not share CER information through BCT. Furthermore, when the supplier’s CER efficiency is low, the manufacturer prefers that the supplier share this information. Counterintuitively, the supplier will only share CER information through BCT when the CER efficiencies of both the supplier and manufacturer are comparable. This diverges from the findings of existing studies, as the CER investments of the supplier and the manufacturer in this study are interdependent. In addition, despite the high energy consumption associated with BCT, the supplier and manufacturer embrace its adoption and share CER information for the sake of environmental benefits.

Practical implications

The firms in low-carbon supply chains can adopt BCT to improve consumers’ trust. Furthermore, if the CER efficiencies of the firms are low, they should share CER information through BCT. Nonetheless, a lower unit usage cost of BCT is the precondition.

Originality/value

This paper makes the first move to discuss BCT adoption and BCT-supported information sharing for collaborative emission reduction in supply chains while considering the transparency and high consumption of BCT.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 21 September 2012

Cheng‐jun Wang

The purpose of this paper is to study the triple helix (TH) of Chinese university‐industry‐government relationships.

1958

Abstract

Purpose

The purpose of this paper is to study the triple helix (TH) of Chinese university‐industry‐government relationships.

Design/methodology/approach

Following an evolution path of TH in China, the relations among the actors for innovation have been analyzed and then it is realized that it is not university‐government‐academe relations, but “university‐industry‐government relations”.

Findings

The paper points out some limitations and flaws of university‐industry‐academy and brings forward the evolutionary path to TH of university‐industry‐government collaboration and development to cope with these practical and theoretical problems.

Originality/value

The author asserts that university‐industry‐government should be affirmed, not university‐industry‐academy in China for truth, which can dialogue with international academic circles.

Details

Journal of Knowledge-based Innovation in China, vol. 4 no. 3
Type: Research Article
ISSN: 1756-1418

Keywords

Article
Publication date: 3 February 2022

Juan Du, Yan Xue, Vijayan Sugumaran, Min Hu and Peng Dong

For prefabricated building construction, improper handling of the production scheduling for prefabricated components is one of the main reasons that affect project performance…

Abstract

Purpose

For prefabricated building construction, improper handling of the production scheduling for prefabricated components is one of the main reasons that affect project performance, which causes overspending, schedule overdue and quality issues. Prior research on prefabricated components production schedule has shown that optimizing the flow shop scheduling problem (FSSP) is the basis for solving this issue. However, some key resources and the behavior of the participants in the context of actual prefabricated components production are not considered comprehensively.

Design/methodology/approach

This paper characterizes the production scheduling of the prefabricated components problem into a permutation flow shop scheduling problem (PFSSP) with multi-optimization objectives, and limitation on mold and buffers size. The lean construction principles of value-based management (VBM) and just-in-time (JIT) are incorporated into the production process of precast components. Furthermore, this paper applies biogeography-based optimization (BBO) to the production scheduling problem of prefabricated components combined with some improvement measures.

Findings

This paper focuses on two specific scenarios: production planning and production rescheduling. In the production planning stage, based on the production factor, this study establishes a multi-constrained and multi-objective prefabricated component production scheduling mathematical model and uses the improved BBO for prefabricated component production scheduling. In the production rescheduling stage, the proposed model allows real-time production plan adjustments based on uncertain events. An actual case has been used to verify the effectiveness of the proposed model and the improved BBO.

Research limitations/implications

With respect to limitations, only linear weighted transformations are used for objective optimization. In regards to research implications, this paper considers the production of prefabricated components in an environment where all parties in the supply chain of prefabricated components participate to solve the production scheduling problem. In addition, this paper creatively applies the improved BBO to the production scheduling problem of prefabricated components. Compared to other algorithms, the results show that the improved BBO show optimized result.

Practical implications

The proposed approach helps prefabricated component manufacturers consider complex requirements which could be used to formulate a more scientific and reasonable production plan. The proposed plan could ensure the construction project schedule and balance the reasonable requirements of all parties. In addition, improving the ability of prefabricated component production enterprises to deal with uncertain events. According to actual production conditions (such as the occupation of mold resources and storage resources of completed components), prefabricated component manufacturers could adjust production plans to reduce the cost and improve the efficiency of the whole prefabricated construction project.

Originality/value

The value of this article is to provide details of the procedures and resource constraints from the perspective of the precast components supply chain, which is closer to the actual production process of prefabricated components. In addition, developing the production scheduling for lean production will be in line with the concept of sustainable development. The proposed lean production scheduling could establish relationships between prefabricated component factory manufacturers, transportation companies, on-site contractors and production workers to reduce the adverse effects of emergencies on the prefabricated component production process, and promote the smooth and efficient operation of construction projects.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 18 July 2018

Mengwei Tu

Abstract

Details

Education, Migration and Family Relations between China and the UK: The Transnational One-Child Generation
Type: Book
ISBN: 978-1-78714-673-0

Content available

Abstract

Details

Industrial Management & Data Systems, vol. 122 no. 10
Type: Research Article
ISSN: 0263-5577

Article
Publication date: 16 February 2022

Ru Liang, Rui Li, Xue Yan, Zhenzhen Xue and Xin Wei

Prefabricated components sustainable supplier (PCSS) selection is critical to the success of prefabricated projects. However, limited studies have addressed the uncertainty and…

Abstract

Purpose

Prefabricated components sustainable supplier (PCSS) selection is critical to the success of prefabricated projects. However, limited studies have addressed the uncertainty and complexities during the selection process, particularly in multi-criterion group decision-making (MCGDM) circumstances. Hence, the research aims to develop a group decision-making model using a modified fuzzy MCGDM approach for PCSS selection under uncertain situation.

Design/methodology/approach

The proposed study develops a framework for sorting decisions in PCSS selection by using the hesitant fuzzy technique for order preference by similarity to ideal solution (HF-TOPSIS) method. The maximum consistency (MC) model is used to calculate the weights of decision makers (DMs) based on the cardinality and sequence of decision data.

Findings

The proposed framework has been successfully applied and illustrated in the case example of CB01 contract section in Hong Kong-Zhuhai-Macao Bridge (HZMB) megaproject. The results show various complicated decision-making scenarios can be addressed through the proposed approach. The MC model is able to calculate the weights of DMs based on the cardinality and sequence of decision data.

Originality/value

The research contributes to improving accuracy and reliability decision-making processes for PCSS selection, especially under hesitant and fuzzy situations in prefabricated megaprojects.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 May 2022

Ting Wang, Xiaoling Shao and Xue Yan

In intelligent scheduling, parallel batch processing can reasonably allocate production resources and reduce the production cost per unit product. Hence, the research on a…

Abstract

Purpose

In intelligent scheduling, parallel batch processing can reasonably allocate production resources and reduce the production cost per unit product. Hence, the research on a parallel batch scheduling problem (PBSP) with uncertain job size is of great significance to realize the flexibility of product production and mass customization of personalized products.

Design/methodology/approach

The authors propose a robust formulation in which the job size is defined by budget constrained support. For obtaining the robust solution of the robust PBSP, the authors propose an exact algorithm based on branch-and-price framework, where the pricing subproblem can be reduced to a robust shortest path problem with resource constraints. The robust subproblem is transformed into a deterministic mixed integer programming by duality. A series of deterministic shortest path problems with resource constraints is derived from the programming for which the authors design an efficient label-setting algorithm with a strong dominance rule.

Findings

The authors test the performance of the proposed algorithm on the extension of benchmark instances in literature and compare the infeasible rate of robust and deterministic solutions in simulated scenarios. The authors' results show the efficiency of the authors' algorithm and importance of incorporating uncertainties in the problem.

Originality/value

This work is the first to study the PBSP with uncertain size. To solve this problem, the authors design an efficient exact algorithm based on Dantzig–Wolfe decomposition. This can not only enrich the intelligent manufacturing theory related to parallel batch scheduling but also provide ideas for relevant enterprises to solve problems.

Details

Industrial Management & Data Systems, vol. 122 no. 10
Type: Research Article
ISSN: 0263-5577

Keywords

Abstract

Details

Cost Engineering and Pricing in Autonomous Manufacturing Systems
Type: Book
ISBN: 978-1-78973-469-0

1 – 10 of 12