Search results

1 – 5 of 5
Article
Publication date: 16 July 2020

Badr-El-Boudour Bidouche, Thierry Lubin and Smaïl Mezani

The purpose of this paper is to investigate the transient performance of an induction machine coupled with a magnetic gear for industrial applications with low speed and high…

Abstract

Purpose

The purpose of this paper is to investigate the transient performance of an induction machine coupled with a magnetic gear for industrial applications with low speed and high torque requirements. This new solution increases mechanical reliability and does not require maintenance and lubrication. The main objective is to study the direct-on-line starting ability of the electrical machine and its stability regarding a sudden change for the load torque.

Design/methodology/approach

A nonlinear analytical model for the induction machine and the magnetic gear is first developed. The model is then linearized around an operating point to obtain the transfer function between the load angle and the electromagnetic torque from which an analytical expression for the mechanical resonant frequency is obtained.

Findings

It is shown that the direct on-line starting is possible, if the moment of inertia of the load is not greater than a maximum value. Moreover, it is demonstrated that this new system present inherent overload protection.

Originality/value

A new high-performance direct-on-line starting electrical machine is proposed to achieve high torque at low speed without mechanical gear to improve reliability and reduce maintenance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 April 2024

Boussad Moualek, Simon Chauviere, Lamia Belguerras, Smail Mezani and Thierry Lubin

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Abstract

Purpose

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Design/methodology/approach

The paper deals with the design of an MRI compatible electrical actuator. Three-dimensional electromagnetic and thermal analytical models have been developed to design the actuator. These models have been validated through 3D finite element (FE) computations. The analytical models have been inserted in an optimization procedure that uses genetic algorithms to find the optimal parameters of the actuator.

Findings

The analytical models are very fast and precise compared to the FE models. The computation time is 0.1 s for the electromagnetic analytical model and 3 min for the FE one. The optimized actuator does not perturb imaging sequence even if supplied with a current 10 times higher than its rated one. Indeed, the actuator’s magnetic field generated in the imaging area does not exceed 1 ppm of the B0 field generated by the MRI scanner. The actuator can perform up to 25 biopsy cycles without any risk to the actuator or the patient since he maximum temperature rise of the actuator is about 20°C. The actuator is compact and lightweight compared to its pneumatic counterpart.

Originality/value

The MRI compatible actuator uses the B0 field generated by scanner as inductor. The design procedure uses magneto-thermal coupled models that can be adapted to the design of a variety actuation systems working in MRI environment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 March 2022

Simon Chauviere, Lamia Belguerras, Thierry Lubin and Smail Mezani

The purpose of this paper is the design study and realisation of portable low-field open MRI system.

Abstract

Purpose

The purpose of this paper is the design study and realisation of portable low-field open MRI system.

Design/methodology/approach

The design of the magnetic resonance imaging (MRI) system is based on an optimization study using a genetic algorithm. Non-linear two-dimensional and three-dimensional numerical electromagnetic models are developed and inserted in the optimization environment.

Findings

The results are found to be consistent with those issued from fully experimental tests. The static field produced by the device is 0.295 T with a homogeneity of 2.8% (28,000 ppm) over 100 mm diameter sphere volume. The z-axis gradient coils are capable of generating switching gradients with an amplitude of 8 mT/m and a frequency of 1.2 kHz.

Originality/value

Our system is an open portable MRI which can be used in an ambulance. The open topology permits an easy access into the lateral sides when a surgery using surgical instrument with video feedback is needed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 February 2022

Aziz Zerioul, Larbi Hadjout, Youcef Ouazir, Smail Mezani and Mohammed Messadi

The purpose of this paper is to develop a new and fast three-dimensional (3D) analytical model to study a synchronous axial magnetic coupling with rectangular shaped magnets. This…

Abstract

Purpose

The purpose of this paper is to develop a new and fast three-dimensional (3D) analytical model to study a synchronous axial magnetic coupling with rectangular shaped magnets. This model takes into account edge and curvature 3D effects.

Design/methodology/approach

This paper firstly introduces a 3D analytical model for an axial coupler with sector shaped permanent magnet (PM) based on magnetic scalar potential formulation in cylindrical coordinates. The magnetic field in PM, air gap and iron disks is computed by solving Laplace’s and Poisson’s partial differential equation. This solution is then used to compute the field in rectangular shaped magnets. To do so, the adopted approach consists to divide the rectangular magnet into sector radial slices each of which the 3D model allows the determination of the magnetic field distribution. The results obtained by the proposed 3D analytical model are validated through 3D finite element computations. Furthermore, a prototype axial magnetic coupler has been constructed so air gap flux density and static torque measurements are compared to the analytical predictions.

Findings

The results obtained by the analytical model show the effectiveness of the proposed geometry transformation approach. The developed model takes into account all the 3D effects without needing any correction factor.

Research limitations/implications

The developed method provides an efficient and rapid tool for evaluating the influence of geometric and physical parameters of a synchronous magnetic coupling as part of a design optimization process.

Practical implications

The developed method provides an efficient and rapid tool for evaluating the influence of geometric and physical parameters of a synchronous magnetic coupling as part of a design optimization process.

Originality/value

A new and fast 3D analytical model, to improve the computation of the electromagnetic torque developed by a synchronous magnetic coupler with rectangular shaped magnets, has been developed. The proposed approach is really effective as it leads to consistent results when compared to 3D finite element method ones without any need for correction factor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 June 2020

Mohammed Messadi, Larbi Hadjout, Youcef Ouazir, Hakim Bensaidane, Noureddine Takorabet, Thierry Lubin and Smail Mezani

This paper aims to propose a new 3D electromagnetic model to compute translational motion eddy current in the conducting plate of a novel linear permanent magnet (PM) induction…

Abstract

Purpose

This paper aims to propose a new 3D electromagnetic model to compute translational motion eddy current in the conducting plate of a novel linear permanent magnet (PM) induction heater. The movement of the plate in a DC magnetic field created by a PM inductor generates induced currents that are at the origin of a heating power by Joule effect. These topologies have strong magnetic end effects. The analytical model developed in this work takes into account the finite length extremity effects of the conducting plate and the reaction field because of induced currents.

Design/methodology/approach

The developed model is based on the combination of the sub-domain’s method and the image’s theory. First, the magnetic field expressions because of the PMs are obtained by solving the three-dimensional Maxwell equations by the method of separation of variables, using a magnetic scalar potential formulation and a magnetic field strength formulation. Then, the motional eddy currents are computed using the Ampere law, and the finite length extremity effects of the conducting plate are taken into account using the image’s method. To analyze the accuracy of the proposed model, the obtained results are compared to those obtained from 3D finite element model (FEM) and from experimental tests performed on a prototype.

Findings

The results show that the developed analytical model is very accurate, even for geometries where the edge effects are very strong. It allows directly taking into account the finite length extremity effects (the transverse edge effects) of the conducting plate and the reaction field because of induced currents without the need of any correction factor. The proposed model also presents an important reduction in computation time compared to 3D finite element simulation, allowing fast analysis of linear PM induction heater.

Practical implications

The proposed electromagnetic analytical model can be used as a quick and accurate design tool for translational motion PM induction heater devices.

Originality/value

A new 3D analytical electromagnetic model, to find the induced power in the conducting plate of a novel translational motion induction heater has been developed. The studied heating device has a finite length and a finite width, which create edge effects that are not easily considered in calculation. The novelty of the presented method is the accurate 3D analytical model, which allows finding the real power heating and real distribution of the induced currents in the conducting plate without the need to use correction factor. The proposed model also takes into account the reaction field because of induced currents. In addition, the developed model improves an important reduction in the computation time compared with 3D FEM simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 5 of 5