Search results

1 – 2 of 2
Article
Publication date: 13 May 2024

Błażej Nycz, Roman Przyłucki, Łukasz Maliński and Slawomir Golak

The study aims to maximize the efficiency of the process under a given current condition by changing the geometry of the coil. This optimization is economically justified by…

Abstract

Purpose

The study aims to maximize the efficiency of the process under a given current condition by changing the geometry of the coil. This optimization is economically justified by reducing the cost of the process.

Design/methodology/approach

The paper presents the author’s optimization process for a case requiring long computational time. The presented optimization is based on a 3D simulation model of an electromagnetic levitation melting (ELM) inductor.

Findings

The result of the work is to find a suboptimal inductor geometry for ELM.

Research limitations/implications

To solve the presented problem, a procedure using an evolutionary algorithm was relied on. As for all global search algorithms, it is possible to find a local optimum instead of a global one.

Practical implications

The new inductor geometry for ELM, thanks to its higher process efficiency for its class of inductors, can lead to the reduction of the costs of the process by using this type of equipment.

Originality/value

The novelty of the article is a proprietary optimization algorithm and the use of an advanced 3D simulation model which was necessary due to the lack of symmetry of the ELM inductor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2016

Slawomir Golak and Mirosław Kordos

The attractiveness of functionally graded composites lies in the possibility of a gradual spatial change of their properties such as hardness, strength and wear resistance. The…

Abstract

Purpose

The attractiveness of functionally graded composites lies in the possibility of a gradual spatial change of their properties such as hardness, strength and wear resistance. The purpose of this paper is to discuss the use of electromagnetic buoyancy to separate the reinforcement particles during the casting process of such a composite.

Design/methodology/approach

The basic problem encountered in the process of casting composites is to obtain electromagnetic buoyancy and simultaneously to avoid a flow of the liquid metal which destroys the desired composite structure. In this paper the authors present the methodology of numerical optimization of inductor geometry in order to homogenize the electromagnetic force field distribution.

Findings

The optimization method based on searching the solution subspace created by applying knowledge of the modelled process physics proved better than the universal local optimization methods. These results were probably caused by the complex shape of the criterion function hypersurface characterized by the presence of local minima.

Practical implications

Due to their characteristics, functionally graded composites are of great interest to the automotive, aerospace and defense industries. In the case of metal matrix composites casting techniques (as the presented one) are the most effective methods of producing functionally graded materials.

Originality/value

The paper presents the optimization of a new process of casting functionally graded composites in a low-frequency alternating electromagnetic field. The process involves problems that did not occur previously in the area of electromagnetic processing of materials. The paper proposes the use of special design of inductors to homogenize the electromagnetic force field.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2