Search results

1 – 10 of 15
Article
Publication date: 7 May 2024

Zhouxiang Jiang, Shiyuan Chen, Yuchen Zhao, Zhongjie Long, Bao Song and Xiaoqi Tang

In typical model-based calibration, linearization errors are derived inevitably, and non-negligible negative impact will be induced on the identification results if the rotational…

Abstract

Purpose

In typical model-based calibration, linearization errors are derived inevitably, and non-negligible negative impact will be induced on the identification results if the rotational kinematic errors are not small enough or the lengths of links are too long, which is common in the industrial cases. Thus, an accurate two-step kinematic calibration method minimizing the linearization errors is presented for a six-DoF serial robot to improve the calibration accuracy.

Design/methodology/approach

The negative impact of linearization on identification accuracy is minimized by removing the responsible linearized kinematic errors from the complete kinematic error model. Accordingly, the identification results of the dimension-reduced new model are accurate but not complete, so the complete kinematic error model, which achieves high identification accuracy of the rest of the error parameters, is combined with this new model to create a two-step calibration procedure capable of highly accurate identification of all the kinematic errors.

Findings

The proportions of linearization errors in measured pose errors are quantified and found to be non-negligible with the increase of rotational kinematic errors. Thus, negative impacts of linearization errors are analyzed quantitatively in different cases, providing the basis for allowed kinematic errors in the new model. Much more accurate results were obtained by using the new two-step calibration method, according to a comparison with the typical methods.

Originality/value

This new method achieves high accuracy with no compromise on completeness, is easy to operate and is consistent with the typical method because the second step with the new model is conveniently combined without changing the sensors or measurement instrument setup.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 8 August 2018

Emrah Bulut, Okan Duru and T.L. Yip

354

Abstract

Details

Maritime Business Review, vol. 3 no. 2
Type: Research Article
ISSN: 2397-3757

Article
Publication date: 2 April 2024

Shiyuan Yin, Mengqi Jiang, Lujie Chen and Fu Jia

Within the current institutional landscape, characterized by increased societal and governmental emphasis on environmental preservation, there is growing interest in the potential…

Abstract

Purpose

Within the current institutional landscape, characterized by increased societal and governmental emphasis on environmental preservation, there is growing interest in the potential of digital transformation (DT) to advance the circular economy (CE). Nonetheless, the empirical substantiation of the connection between DT and CE remains limited. This study seeks to investigate the impact of DT on CE at the organizational level and examine how various institutional factors may shape this relationship within the Chinese context.

Design/methodology/approach

To scrutinize this association, we construct a research framework and formulate hypotheses drawing on institutional theory, obtaining panel data from 238 Chinese-listed high-tech manufacturing firms from 2006 to 2019. A regression analysis approach is adopted for the sample data.

Findings

Our regression analysis reveals a positive influence of DT on CE performance at the organizational level. Furthermore, our findings suggest that the strength of this relationship is bolstered in the presence of heightened regional institutional development and industry competition. Notably, we find no discernible effect of a firm’s political connections on the DT–CE performance nexus.

Originality/value

This study furnishes empirical evidence on the relationship between DT and CE performance. By elucidating the determinants of this relationship within the distinct context of Chinese institutions, our research offers theoretical and practical insights, thus laying the groundwork for subsequent investigations into this burgeoning area of inquiry.

Details

Industrial Management & Data Systems, vol. 124 no. 4
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 9 April 2018

Pengfei Du, G.X. Chen, Shiyuan Song, Jiang Wu, Kechen Gu, Dachuan Zhu and Jin Li

The tribological properties of muscovite and its thermal-treated products as lubricant additives in lithium grease were investigated. The effect of thermal temperature on the…

Abstract

Purpose

The tribological properties of muscovite and its thermal-treated products as lubricant additives in lithium grease were investigated. The effect of thermal temperature on the crystal structure and tribological properties of muscovite was studied. This study aims to explore the tribological mechanism of muscovite and optimize a proper thermal activation temperature, thus further improving the tribological properties.

Design/methodology/approach

The crystal structure of muscovite samples was characterized by SEM, TG-DSC, XRD and FTIR. The tribological properties of grease samples were investigated using a four-ball tribotester and the worn surface was analyzed by SEM and EDS.

Findings

The excellent tribological properties of muscovite can be ascribed to the layer structure and lubricant film formed on the worn surface. Thermal temperature at 500-600°C increases the surface activity and oxygen releasing capability, and thus favors the formation of lubricant film and accordingly further improves the tribological properties. However, the layer structure is destroyed and hard phases such as alumina and amorphous appear after thermal temperature activated beyond 1000°C, as it results in the aggravation of friction and wear.

Originality/value

To the authors’ knowledge, it is the first to study the effect of thermal temperature on the crystal structure and tribological properties of muscovite. The tribological mechanism of muscovite particle and its thermal-treated products was disclosed.

Details

Industrial Lubrication and Tribology, vol. 70 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 28 June 2018

Shun Chen, Shiyuan Zheng and Hilde Meersman

The occurrence and unpredictability of speculative bubbles on financial markets, and their accompanying crashes, have confounded economists and economic historians worldwide. The…

1279

Abstract

Purpose

The occurrence and unpredictability of speculative bubbles on financial markets, and their accompanying crashes, have confounded economists and economic historians worldwide. The purpose of this paper is to diagnose and detect the bursting of shipping bubbles ex ante, and to qualify the patterns of shipping price dynamics and the bubble mechanics, so that appropriate counter measures can be taken in advance to reduce side effects arising from bubbles.

Design/methodology/approach

Log periodic power law (LPPL) model, developed in the past decade, is used to detect large market falls or “crashes” through modeling of the shipping price dynamics on a selection of three historical shipping bubbles over the period of 1985 to 2016. The method is based on a nonlinear least squares estimation that yields predictions of the most probable time of the regime switching.

Findings

It could be concluded that predictions by the LPPL model are quite dependent on the time at which they are conducted. Interestingly, the LPPL model could have predicted the substantial fall in the Baltic Dry Index during the recent global downturn, but not all crashes in the past. It is also found that the key ingredient that sets off an unsustainable growth process for shipping prices is the positive feedback. When the positive feedback starts, the burst of bubbles in shipping would be influenced by both endogenous and exogenous factors, which are crucial for the advanced warning of the market conversion.

Originality/value

The LPPL model has been first applied into the dry bulk shipping market to test a couple of shipping bubbles. The authors not only assess the predictability and robustness of the LPPL model but also expand the understanding of the model and explain patterns of shipping price dynamics and bubble mechanics.

Details

Maritime Business Review, vol. 3 no. 2
Type: Research Article
ISSN: 2397-3757

Keywords

Content available
Article
Publication date: 24 October 2018

Shiyuan Zheng and Shun Chen

This study aims to propose a theoretical model to characterize the optimal forward freight agreement (FFA) procurement strategies and investigate the determinants of FFA trading…

1986

Abstract

Purpose

This study aims to propose a theoretical model to characterize the optimal forward freight agreement (FFA) procurement strategies and investigate the determinants of FFA trading activities from a new cross-market perspective.

Findings

A two-step model specification is used to empirically test the theoretical results for the Capesize, Panamax and Supramax sectors. It is found that spot demand has a positive relation with FFA trading volume for all three sectors. Moreover, spot demand volatility has a negative relation, while the correlation between spot demand and spot rate has a positive relation with FFA trading volume for the Capesize and Panamax sectors.

Originality/value

The results show that the expected spot demand is scaled by a “quantity premium,” which is the product of a demand covariance term, a demand riskiness term and a demand volatility term. This can be used by the traders in the FFA market to construct their hedging strategies.

Details

Maritime Business Review, vol. 3 no. 3
Type: Research Article
ISSN: 2397-3757

Keywords

Article
Publication date: 8 August 2023

Shiyuan Liu, Guangwu Sun, Hongfen Zuo, Xiaona Chen, Shanshan Shang and Hongyan Hu

The purpose of this paper is to predict the effect of bra pad specifications on breast deformation during jumping using a finite element (FE) method. Breast deformation is a key…

Abstract

Purpose

The purpose of this paper is to predict the effect of bra pad specifications on breast deformation during jumping using a finite element (FE) method. Breast deformation is a key concern for women during exercise and can be effectively controlled with sports bras. In most studies, the deformation of breasts when wearing a sports bra is measured using motion capture devices to judge their effectiveness. However, the operation of such devices is highly complex and time-consuming. Computer-aided technology is an efficient way to simulate these experiments.

Design/methodology/approach

In this study, the breast model was obtained using three-dimensional (3D) scanning. Assembling models were obtained for FE analysis using reverse engineering and computer-aided design (CAD) software. The breast deformation results were obtained by completing pre-processing, solving and post-processing in the FE simulation software. To extend the application of these models, pads of different sizes and thicknesses within the bra were constructed to simulate the effect of pads on breast deformation.

Findings

The calculated root mean square errors were <1%, which indicated good agreement between the FE and experimental data in all the models. Nipple deformation was always the largest in most models. The smallest deformation occurred at the superior position of breasts in all models. In addition, larger pads were not effective in reducing breast deformation; however, thicker pads were.

Originality/value

The method developed in this study provides an effective way to predict breast deformation in multiple positions and is convenient for designing compression bras.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 23 May 2023

Shiyuan Yang, Debiao Meng, Hongtao Wang, Zhipeng Chen and Bing Xu

This study conducts a comparative study on the performance of reliability assessment methods based on adaptive surrogate models to accurately assess the reliability of automobile…

Abstract

Purpose

This study conducts a comparative study on the performance of reliability assessment methods based on adaptive surrogate models to accurately assess the reliability of automobile components, which is critical to the safe operation of vehicles.

Design/methodology/approach

In this study, different adaptive learning strategies and surrogate models are combined to study their performance in reliability assessment of automobile components.

Findings

By comparing the reliability evaluation problems of four automobile components, the Kriging model and Polynomial Chaos-Kriging (PCK) have better robustness. Considering the trade-off between accuracy and efficiency, PCK is optimal. The Constrained Min-Max (CMM) learning function only depends on sample information, so it is suitable for most surrogate models. In the four calculation examples, the performance of the combination of CMM and PCK is relatively good. Thus, it is recommended for reliability evaluation problems of automobile components.

Originality/value

Although a lot of research has been conducted on adaptive surrogate-model-based reliability evaluation method, there are still relatively few studies on the comprehensive application of this method to the reliability evaluation of automobile component. In this study, different adaptive learning strategies and surrogate models are combined to study their performance in reliability assessment of automobile components. Specially, a superior surrogate-model-based reliability evaluation method combination is illustrated in this study, which is instructive for adaptive surrogate-model-based reliability analysis in the reliability evaluation problem of automobile components.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 September 2023

Shiyuan Yang, Debiao Meng, Yipeng Guo, Peng Nie and Abilio M.P. de Jesus

In order to solve the problems faced by First Order Reliability Method (FORM) and First Order Saddlepoint Approximation (FOSA) in structural reliability optimization, this paper…

137

Abstract

Purpose

In order to solve the problems faced by First Order Reliability Method (FORM) and First Order Saddlepoint Approximation (FOSA) in structural reliability optimization, this paper aims to propose a new Reliability-based Design Optimization (RBDO) strategy for offshore engineering structures based on Original Probabilistic Model (OPM) decoupling strategy. The application of this innovative technique to other maritime structures has the potential to substantially improve their design process by optimizing cost and enhancing structural reliability.

Design/methodology/approach

In the strategy proposed by this paper, sequential optimization and reliability assessment method and surrogate model are used to improve the efficiency for solving RBDO. The strategy is applied to the analysis of two marine engineering structure cases of ship cargo hold structure and frame ring of underwater skirt pile gripper. The effectiveness of the method is proved by comparing the original design and the optimized results.

Findings

In this paper, the proposed new RBDO strategy is used to optimize the design of the ship cargo hold structure and the frame ring of the underwater skirt pile gripper. According to the results obtained, compared with the original design, the structure of optimization design has better reliability and stability, and reduces the risk of failure. This optimization can also better balance the relationship between performance and cost. Therefore, it is recommended for related RBDO problems in the field of marine engineering.

Originality/value

In view of the limitations of FORM and FOSA that may produce multiple MPPs for a single performance function, the new RBDO strategy proposed in this study provides valuable insights and robust methods for the optimization design of offshore engineering structures. It emphasizes the importance of combining advanced MPP search technology and integrating SORA and surrogate models to achieve more economical and reliable design.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 July 2022

Debiao Meng, Shiyuan Yang, Chao He, Hongtao Wang, Zhiyuan Lv, Yipeng Guo and Peng Nie

As an advanced calculation methodology, reliability-based multidisciplinary design optimization (RBMDO) has been widely acknowledged for the design problems of modern complex…

Abstract

Purpose

As an advanced calculation methodology, reliability-based multidisciplinary design optimization (RBMDO) has been widely acknowledged for the design problems of modern complex engineering systems, not only because of the accurate evaluation of the impact of uncertain factors but also the relatively good balance between economy and safety of performance. However, with the increasing complexity of engineering technology, the proposed RBMDO method gradually cannot effectively solve the higher nonlinear coupled multidisciplinary uncertainty design optimization problems, which limits the engineering application of RBMDO. Many valuable works have been done in the RBMDO field in recent decades to tackle the above challenges. This study is to review these studies systematically, highlight the research opportunities and challenges, and attempt to guide future research efforts.

Design/methodology/approach

This study presents a comprehensive review of the RBMDO theory, mainly including the reliability analysis methods of different uncertainties and the decoupling strategies of RBMDO.

Findings

First, the multidisciplinary design optimization (MDO) preliminaries are given. The basic MDO concepts and the corresponding mathematical formulas are illustrated. Then, the procedures of three RBMDO methods with different reliability analysis strategies are introduced in detail. These RBMDO methods were proposed for the design optimization problems under different uncertainty types. Furtherly, an optimization problem for a certain operating condition of a turbine runner blade is introduced to illustrate the engineering application of the above method. Finally, three aspects of future challenges for RBMDO, namely, time-varying uncertainty analysis; high-precision surrogate models, and verification, validation and accreditation (VVA) for the model, are discussed followed by the conclusion.

Originality/value

The scope of this study is to introduce the RBMDO theory systematically. Three commonly used RBMDO-SORA methods are reviewed comprehensively, including the methods' general procedures and mathematical models.

1 – 10 of 15