Search results

1 – 10 of 126
Article
Publication date: 22 March 2021

Sathish K. R. and T. Ananthapadmanabha

This paper aims to propose, the multi-objective method for optimal planning and operation of distributed generators (DGs) on distribution system (DS) using hybrid technique is…

Abstract

Purpose

This paper aims to propose, the multi-objective method for optimal planning and operation of distributed generators (DGs) on distribution system (DS) using hybrid technique is proposed.

Design/methodology/approach

The proposed hybrid technique denotes hybrid wrapper of black widow optimization algorithm (BWOA) and bear smell search algorithm (BSSA). BWOA accelerates the convergence speed with combination of the search strategy of BSSA; hence, it is named as improved black widow-bear smell search algorithm (IBWBSA) technique.

Findings

The multiple-objective operation denotes reducing generation cost, power loss, voltage deviation with optimally planning and operating the DS. For setting up the DG units on DS, IBWBSA technique is equipped to simultaneously reconfigure and find the optimal areas.

Originality/value

In this planning model, the constraints are power balance, obvious power flow limit, bus voltage, distribution substation’s capacity and cost. Then, proposed multiple-objective hybrid method to plan electrical distribution scheme is executed in the MATLAB/Simulink work site.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 August 2021

Naren Shankar R., Ganesan V.G., Dilip Raja N., Sathish Kumar K. and Vijayaraja K.

The effect of increasing lip thickness (LT) and Mach number on subsonic co-flowing Jet (CFJ) decay at subsonic and correctly expanded sonic Mach numbers has been analysed…

Abstract

Purpose

The effect of increasing lip thickness (LT) and Mach number on subsonic co-flowing Jet (CFJ) decay at subsonic and correctly expanded sonic Mach numbers has been analysed experimentally and numerically in this study. This study aims to a critical LT below which mixing enhances and above which mixing inhibits.

Design/methodology/approach

LT is the distance, separating the primary nozzle and the secondary duct, present in the co-flowing nozzle. The CFJ with LT ranging from 2 mm to 150 mm at jet exit Mach numbers of 0.6, 0.8 and 1.0 were studied in detail. The CFJ with 2 mm LT is used for comparison. Centreline total pressure decay, centreline static pressure decay and near field flow behaviour were analysed.

Findings

The result shows that the mixing enhances until a critical limit and a further increase in the LT does not show any variation in the jet mixing. Beyond this critical limit, the secondary jet has a detrimental effect on the primary jet, which deteriorates the process of mixing. The CFJ within the critical limit experiences a significantly higher mixing. The effect of the increase in the Mach number has marginal variation in the total pressure and significant variation in static pressure along the jet axis.

Practical implications

In this study, the velocity ratio (VR) is maintained constant and the bypass ratio (BR) was varied from low value to very high values for subsonic and correctly expanded sonic. Presently, commercial aircraft engine operates under these Mach numbers and low to ultra-high BR. Hence, the present study becomes essential.

Originality/value

This is the first effort to find the critical value of LT for a constant VR for a Mach number range of 0.6 to 1.0, compressible CFJ. The CFJs with constant VR of unity and varying LT, in these Mach number range, have not been studied in the past.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 May 2022

Vijay Raviprabhakaran

The distributed generation (DG) proper placement is an extremely rebellious concern for attaining their extreme potential profits. This paper aims to propose the application of…

Abstract

Purpose

The distributed generation (DG) proper placement is an extremely rebellious concern for attaining their extreme potential profits. This paper aims to propose the application of the communal spider optimization algorithm (CSOA) to the performance model of the wind turbine unit (WTU) and photovoltaic (PV) array locating method. It also involves the power loss reduction and voltage stability improvement of the ring main distribution system (DS).

Design/methodology/approach

This paper replicates the efficiency of WTU and PV array enactment models in the placement of DG. The effectiveness of the voltage stability factor considered in computing the voltage stability levels of buses in the DS is studied.

Findings

The voltage stability levels are augmented, and total losses are diminished for the taken bus system. The accomplished outcomes exposed the number of PV arrays accompanied by the optimal bus location for various penetration situations.

Practical implications

The optimal placement and sizing of wind- and solar-based DGs are tested on the 15- and 69-test bus system.

Originality/value

Moreover, the projected CSOA algorithm outperforms the PSOA, IAPSOA, BBO, ACO and BSO optimization techniques.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 April 2022

Naren Shankar R. and Ganesan V.G.

The purpose of this study is to analyse numerically and experimentally the effects of lip thickness (LT) and bypass ratio on co-flowing nozzle under subsonic and correctly…

82

Abstract

Purpose

The purpose of this study is to analyse numerically and experimentally the effects of lip thickness (LT) and bypass ratio on co-flowing nozzle under subsonic and correctly expanded sonic jet decay at different Mach numbers.

Design/methodology/approach

Co-flowing jets from co-flowing nozzles of different LTs, 0.2, 1 and 1.5 Dp (where Dp is the primary nozzle exit diameter = 10 mm), with an annular gap of 10 mm at main jet exit Mach numbers 0.6 have been studied experimentally and the other cases have been performed numerically. The co-flowing jet with 2 mm LT was used for comparison.

Findings

Co-flowing jet axial pitot pressure decay, axial static pressure decay, axial velocity decay, radial velocity decay and streamline velocity contours were analyzed. The results illustrate that the mixing of the co-flowing jet with profound LT is prevalent to the co-flowing jet with 2 mm LT, at all Mach numbers of the current study. Also, the LT of the co-flowing jet has a strong impact on jet mixing. Co-flowing jets with 10 mm and 15 mm LT with a constant co-flow width of 10 mm experience a considerably advanced mixing than co-flowing jets with 2 mm LT and a co-flow width of 10 mm.

Practical implications

The application of bypassed co-flow jet is in turbofan engine operates efficiently in modern civil aircraft.

Originality/value

All subsonic jets are considered correctly expanded with negligible variation in axial static pressure. However, in the present study, static pressure along the centerline varies sinusoidally up to 9% and 12% above and below atmospheric pressure, respectively, for primary jet exit Mach number 1.0. The sinusoidal variation is less for primary jet exit Mach numbers 0.6 and 0.8 in static pressure decay.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 October 2018

Manikandan Subramaniyan, Sasitharan Subramaniyan, Moorthy Veeraswamy and Viswanatha Rao Jawalkar

This paper aims to address not only technical and economic challenges in electrical distribution system but also environmental impact and the depletion of conventional energy…

Abstract

Purpose

This paper aims to address not only technical and economic challenges in electrical distribution system but also environmental impact and the depletion of conventional energy resources due to rapidly growing economic development, results rising energy consumption.

Design/methodology/approach

Generally, the network reconfiguration (NR) problem is designed for minimizing power loss. Particularly, it is devised for maximizing power loss reduction by simultaneous NR and distributed generation (DG) placement. A loss sensitivity factor procedure is incorporated in the problem formulation that has identified sensitivity nodes for DG optimally. An adaptive weighted improved discrete particle swarm optimization (AWIDPSO) is proposed for ascertaining a feasible solution.

Findings

In AWIDPSO, the adaptively varying inertia weight increases the possible solution in the global search space and it has obtained the optimum solution within lesser iteration. Moreover, it has provided a solution for integrating more amount of DG optimally in the existing distribution network (DN).

Practical implications

The AWIDPSO seems to be a promising optimization tool for optimal DG placement in the existing DN, DG placement after NR and simultaneous NR and DG sizing and placement. Thus, a strategic balance is derived among economic development, energy consumption, environmental impact and depletion of conventional energy resources.

Originality/value

In this study, a standard 33-bus distribution system has been analyzed for optimal NR in the presence of DG using the developed framework. The power loss in the DN has reduced considerably by indulging a new and innovative approaches and technologies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2020

Naren Shankar R., Kevin Bennett S., Dilip Raja N. and Sathish Kumar K.

This study aims to analyze co-flowing jets (CFJs) with constant velocity ratio (VR) and varying primary nozzle lip thickness (LT) to find a critical LT in CFJs below which mixing…

Abstract

Purpose

This study aims to analyze co-flowing jets (CFJs) with constant velocity ratio (VR) and varying primary nozzle lip thickness (LT) to find a critical LT in CFJs below which mixing enhances and beyond which mixing inhibits.

Design/methodology/approach

CFJs were characterized with a constant VR and varying LTs. A single free jet with a diameter equal to that of a primary nozzle of the CFJ was used for characteristic comparison. Numerical simulation is carried out and is validated with the experimental results.

Findings

The results show that within a critical limit, the mixing enhanced with an increase in LT. This was signified by a reduction in potential core length (PCL). Beyond this limit, mixing inhibited leading to the elongation of PCL. This limit was controlled by parameters such as LT and constant VR. A new region termed as influential wake zone is identified.

Practical implications

In this study, the VR is maintained constant and bypass ratio (BR) was varied from low value to very high values. Presently, subsonic commercial turbo fan operates under low to ultra-high BR. Hence the present study becomes vital to the current scenario.

Originality/value

To the best of the authors’ knowledge, this is the first effort to find the critical value of LT for a constant VR for compressible co-flow jets. The CFJs with constant VR and varying LT have not been studied in the past. The present study focuses on finding a critical LT below which mixing enhances and above which mixing inhibits.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 August 2019

Zhengrong Jiang, Quanpan Lin, Kairong Shi and Wenzhi Pan

The purpose of this paper is to propose a new hybrid algorithm, named improved plant growth simulation algorithm and particle swarm optimization hybrid algorithm (PGSA–PSO hybrid…

Abstract

Purpose

The purpose of this paper is to propose a new hybrid algorithm, named improved plant growth simulation algorithm and particle swarm optimization hybrid algorithm (PGSA–PSO hybrid algorithm), for solving structural optimization problems.

Design/methodology/approach

To further enhance the optimization efficiency and precision of this algorithm, the optimization solution process of PGSA–PSO comprises two steps. First, an excellent initial growth point is selected by PSO. Then, the global optimal solution can be obtained quickly by PGSA and its improved strategy called growth space adjustment strategy. A typical mathematical example is provided to verify the capacity of the new hybrid algorithm to effectively improve the global search capability and search efficiency of PGSA. Moreover, PGSA–PSO is applied to the optimization design of a suspended dome structure.

Findings

Through typical mathematical example, the improved strategy can improve the optimization efficiency of PGSA considerably, and an initial growth point that falls near the global optimal solution can be obtained. Through the optimization of the pre-stress of a suspended dome structure, compared with other methods, the hybrid algorithm is effective and feasible in structural optimization.

Originality/value

Through the examples of suspended dome structure, it shows that the optimization efficiency and precision of PGSA–PSO are better than those of other algorithms and methods. PGSA–PSO is effective and feasible in structural optimization problems such as pre-stress optimization, size optimization, shape optimization and even topology optimization.

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 June 2022

Rafi Vempalle and Dhal Pradyumna Kumar

The demand for electricity supply increases day by day due to the rapid growth in the number of industries and consumer devices. The electric power supply needs to be improved by…

Abstract

Purpose

The demand for electricity supply increases day by day due to the rapid growth in the number of industries and consumer devices. The electric power supply needs to be improved by properly arranging distributed generators (DGs). The purpose of this paper is to develop a methodology for optimum placement of DGs using novel algorithms that leads to loss minimization.

Design/methodology/approach

In this paper, a novel hybrid optimization is proposed to minimize the losses and improve the voltage profile. The hybridization of the optimization is done through the crow search (CS) algorithm and the black widow (BW) algorithm. The CS algorithm is used for finding some tie-line systems, DG locations, and the BW algorithm is used for finding the rest of the tie-line switches, DG sizes, unlike in usual hybrid optimization techniques.

Findings

The proposed technique is tested on two large-scale radial distribution networks (RDNs), like the 119-bus radial distribution system (RDS) and the 135 RDS, and compared with normal hybrid algorithms.

Originality/value

The main novelty of this hybridization is that it shares the parameters of the objective function. The losses of the RDN can be minimized by reconfiguration and incorporating compensating devices like DGs.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 25 September 2021

Sathish Kumar K, Naren Shankar R, Anusindhiya K and Senthil Kumar B.R.

This study aims to present the numerical study on supersonic jet mixing characteristics of the co-flow jet by varying lip thickness (LT). The LT chosen for the study is 2 mm, 7.75…

Abstract

Purpose

This study aims to present the numerical study on supersonic jet mixing characteristics of the co-flow jet by varying lip thickness (LT). The LT chosen for the study is 2 mm, 7.75 mm and 15 mm.

Design/methodology/approach

The primary nozzle is designed for delivering Mach 2.0 jet, whereas the secondary nozzle is designed for delivering Mach 1.6 jet. The Nozzle pressure ratio chosen for the study is 3 and 5. To study the mixing characteristics of the co-flow jet, total pressure and Mach number measurements were taken along and normal to the jet axis. To validate the numerical results, the numerical total pressure values were also compared with the experimental result and it is proven to have a good agreement.

Findings

The results exhibit that, the 2 mm lip is shear dominant. The 7.75 mm and 15 mm lip is wake dominant. The jet interaction along the jet axis was also studied using the contours of total pressure, Mach number, turbulent kinetic energy and density gradient. The radial Mach number contours at the various axial location of the jet was also studied.

Practical implications

The effect of varying LT in exhaust nozzle plays a vital role in supersonic turbofan aircraft.

Originality/value

Supersonic co-flowing jet mixing effectiveness by varying the LT between the primary supersonic nozzle and the secondary supersonic nozzle has not been analyzed in the past.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 18 July 2022

Vimal Sharma and Deepak Sood

Introduction: Artificial intelligence (AI), the engineering of brilliant machinery, performs intelligent human intelligence tasks, such as learning and problem-solving. Insurance…

Abstract

Introduction: Artificial intelligence (AI), the engineering of brilliant machinery, performs intelligent human intelligence tasks, such as learning and problem-solving. Insurance is a financial protection policy either for individuals or entities to reimburse losses from the insured company. The role of AI in insurance always helps enhance customer services and understand their behaviour.

Purpose: This chapter aims to determine the role of AI in the insurance industry in India. The insurance industry is expanding very fast, and to further increase its horizons, the part of the technology of AI is essential. However, this sector has initiated using AI technology and is expanding its scope to benefit the customers.

Methodology: The authors selected research papers of the last five years to review and determine how the technology changed during the period and how an increase in AI benefits the industry and facilitates delivering the best services, and understanding the customer’s needs and behaviour.

Findings: It has been found that the industry is moving very fast and adopting the AI technology methods to enhance customer services, betterment for growing India, and serve insurance services to the nation efficiently.

Details

Big Data Analytics in the Insurance Market
Type: Book
ISBN: 978-1-80262-638-4

Keywords

1 – 10 of 126