Search results

1 – 1 of 1
Article
Publication date: 30 October 2023

Aizhan Doshibekova, Indira Jurinskaya, Salikh Tashpulatov, Raushan Zhilisbayeva, Lazzat Sarttarova, Rustam Akbarov and Marzhan Kalmakhanova

This paper aims to study the possibility of electroplating copper coatings on chemically and chemical-galvanically nickel-plated acrylic fibers, to be further processed into yarn…

Abstract

Purpose

This paper aims to study the possibility of electroplating copper coatings on chemically and chemical-galvanically nickel-plated acrylic fibers, to be further processed into yarn, fabrics, knitwear and nonwoven materials.

Design/methodology/approach

Electrically conductive fibers with different copper contents have been obtained, and the effect of electrolyte pH, its composition, current strength at the first and second cathodes, as well as the metallization time on the electrophysical, physical and mechanical properties of copper-containing fibers, has been studied.

Findings

The studies have shown that with an increase in the copper content, the electrical conductivity, the uniformity of the coating and the uniformity of the electrophysical properties (for chemical-galvanically nickel-plated fiber) increase. In the case of copper plating of chemically nickel-plated fiber, the coefficient of variation in electrical resistance increases with increasing plating time, even though the copper content increases, and the coefficient of variation in copper content and electrical resistance decreases. The physical and mechanical properties of copper-containing fibers differ slightly from the original (subjected to copper plating) and industrial Nitron fibers. With copper plating, the strength of the fiber practically does not decrease, and the elongation decreases somewhat, compared with the mass-produced Nitron fiber.

Originality/value

The physical and mechanical properties of copper-containing fibers are quite high, which makes it possible to be successfully further processed into yarn, fabrics, knitwear and nonwoven materials.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 1 of 1