Search results

1 – 2 of 2
Article
Publication date: 16 February 2023

Zhenan Feng, Ruggiero Lovreglio, Tak Wing Yiu, Dwayne Mark Acosta, Banghao Sun and Nan Li

In the construction sector, site excavation is one of the most dangerous and challenging activities. Proper training can be an effective way to mitigate excavation hazards…

397

Abstract

Purpose

In the construction sector, site excavation is one of the most dangerous and challenging activities. Proper training can be an effective way to mitigate excavation hazards. Virtual reality (VR) has been used as an effective training tool to enhance safety performance in various industries. However, little attention has been paid to the potential of this technology for construction excavation safety training.

Design/methodology/approach

This study proposes an immersive VR training system for excavation safety and hazard identification. The proposed VR training system was compared with a health and safety manual via a controlled experiment.

Findings

Results based on scores obtained immediately after training indicate that VR training significantly enhanced practical performance, knowledge acquisition and self-efficacy. Results also show that knowledge was retained four weeks after training. In addition, VR training outperformed health and safety manuals regarding knowledge retention.

Originality/value

This study measures the practical performance to evaluate the effectiveness of the proposed VR training system. Also, this study compares the VR training system with a traditional training method by measuring knowledge acquisition and retention. The results demonstrate the potential of VR as a training tool for excavation safety and hazards.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 16 November 2022

Hesam Khorrami Shad, Kenneth Tak Wing Yiu, Ruggiero Lovreglio and Zhenan Feng

This paper aims to explore augmented reality (AR) applications in construction safety academic literature and propose possible improvements for future scholarly works. The paper…

Abstract

Purpose

This paper aims to explore augmented reality (AR) applications in construction safety academic literature and propose possible improvements for future scholarly works. The paper explicitly focuses on AR integration with Construction 4.0 technologies as an effective solution to safety concerns in the construction industry.

Design/methodology/approach

This study applied a systematic review approach. In total, 387 potentially relevant articles from databases were identified. Once filtering criteria were applied, 29 eligible papers where selected. The inclusion criteria were being directly associated with construction safety focused on an AR application and AR interactions associated with the Construction 4.0 technologies.

Findings

This study investigated the structure of AR applications in construction safety. To this end, the authors studied the safety purposes of AR applications in construction safety: pre-event (intelligent operation, training, safety inspection and hazard alerting), during-event (pinpointing hazard) and post-event (safety estimation) applications. Then, the integration of AR with Construction 4.0 technologies was elaborated. The systematic review also revealed that the AR integration has contributed to developing several technical aspects of AR technology: display, tracking and human–computer interaction. The study results indicate that AR integration with construction is effective in mitigating safety concerns; however, further research studies are required to support this statement.

Originality/value

This study contributes to exploring applications and integrations of AR into construction safety in order to facilitate the leverage of this technology. This review can help encourage practitioners and researchers to conduct further academic investigations into AR application in construction safety.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 2 of 2