Search results

1 – 5 of 5
Article
Publication date: 19 August 2020

Garima Sharma and Rajiv Nandan Rai

Industries generally require good maintenance, repair and overhaul (MRO) facilities. Maintenance activities at MRO cover the normal scheduled check-ups known as scheduled…

Abstract

Purpose

Industries generally require good maintenance, repair and overhaul (MRO) facilities. Maintenance activities at MRO cover the normal scheduled check-ups known as scheduled preventive maintenance (SPM) whereas an overhaul reviews and rejuvenates the complete system at a scheduled time. The literature is reasonably stocked with reliability modelling of repairable systems considering both the corrective maintenance (CM) and SPM as imperfect. However, in all these situations the overhaul is modelled as perfect repair. Thus, the purpose of this research paper is to develop a mathematical model for the estimation of reliability parameters considering the complete MRO as imperfect.

Design/methodology/approach

The paper proposes arithmetic reduction of age (Kijima I) based virtual age model to estimate reliability parameters by considering the complete MRO as imperfect and provides the likelihood and log-likelihood functions for parameter estimation of the proposed model and also presents the various extensions of the proposed model.

Findings

For analysis, two real-time data sets of two components, i.e. turbostarter and plunger pump are considered. The analysis mainly focuses on intensity function and availability of components. The availability analysis of the components directly affects the cost analysis. It is very important to analyze the realistic trend of availability, and the comparative analysis shows that the assumption of perfect overhaul overestimates and minimal overhaul underestimates the performance of the components whereas assumption of imperfect overhaul portraits more sensible deteriorating and availability trend of the components.

Originality/value

The proposed methodology in this paper is a novice and not available in the literature.

Details

International Journal of Quality & Reliability Management, vol. 38 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 26 July 2021

Garima Sharma and Rajiv Nandan Rai

Degradation of repairable components may not be similar after each maintenance activity; thus, the classic (traditional-time based) maintenance policies, which consider preventive…

Abstract

Purpose

Degradation of repairable components may not be similar after each maintenance activity; thus, the classic (traditional-time based) maintenance policies, which consider preventive maintenance (PM), age-based maintenance and overhauls to be done at fixed time interval, may fail to monitor the exact condition of the component. Thus, a progressive maintenance policy (PMP) may be more appropriate for the industries that deal with large, complex and critical repairable systems (RS) such as aerospace industries, nuclear power plants, etc.

Design/methodology/approach

A progressive maintenance policy is developed, in which hard life, PM scheduled time and overhaul period of the system are revised after each service activity by adjusting PM interval and mean residual life (MRL) such that the risk of failure is not increased.

Findings

A comparative study is then carried out between the classic PM policy and developed PMP, and the improvement in availability, mean time between failures and reduction in maintenance cost is registered.

Originality/value

The proposed PMP takes care of the equipment degradation more efficiently than any other existing maintenance policies and is also flexible in its application as the policy can be continuously amended as per the failure profile of the equipment. Similar maintenance policies assuming lifetime distributions are available in the literature, but to ascertain that the proposed PMP is more suitable and applicable to the industries, this paper uses Kijima-based imperfect maintenance models. The proposed PMP is demonstrated through a real-time data set example.

Article
Publication date: 19 February 2024

Anwesa Kar and Rajiv Nandan Rai

The concept of sustainable product design (SPD) is gaining significant attention in recent research. However, due to inherent uncertainties associated with new product development…

Abstract

Purpose

The concept of sustainable product design (SPD) is gaining significant attention in recent research. However, due to inherent uncertainties associated with new product development and incorporation of multiple qualitative and quantitative criteria; SPD is a complex and challenging task. The purpose of this paper is to introduce a novel approach by integrating quality function deployment (QFD), multi-criteria decision making (MCDM) technique and Six Sigma evaluation for facilitating SPD in the context of Industry 4.0.

Design/methodology/approach

The customer requirements are evaluated through the neutrosophic-decision-making trial and evaluation laboratory-analytic network process (DEMATEL-ANP)-based approach followed by utilizing QFD matrix to estimate the weights of the engineering characteristics (EC). The Six Sigma method is then employed to evaluate the alternatives’ design based on the ECs’ values.

Findings

The effectiveness of the suggested approach is illustrated through an example. The result indicates that utilization of the neutrosophic MCDM technique with integration of Six Sigma methodology provides a simple, effective and computationally inexpensive method for SPD.

Practical implications

The proposed approach is helpful in upstream evaluation of the product design with limited experimental/numerical data, maintaining a strong competitive position in the market and enhancing customer satisfaction.

Originality/value

This work provides a novel approach to objectively quantify performance of SPD under the paradigm of Industry 4.0 using the integration of QFD-based hybrid MCDM with Six Sigma method.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 3 February 2022

Anwesa Kar, Garima Sharma and Rajiv Nandan Rai

In order to minimize the impact of variability on performance of the process, proper understanding of factors interdependencies and their impact on process variability (PV) is…

Abstract

Purpose

In order to minimize the impact of variability on performance of the process, proper understanding of factors interdependencies and their impact on process variability (PV) is required. However, with insufficient/incomplete numerical data, it is not possible to carry out in-depth process analysis. This paper presents a qualitative framework for analyzing factors causing PV and estimating their influence on overall performance of the process.

Design/methodology/approach

Fuzzy analytic hierarchy process is used to evaluate the weight of each factor and Bayesian network (BN) is utilized to address the uncertainty and conditional dependencies among factors in each step of the process. The weighted values are fed into the BN for evaluating the impact of each factor to the process. A three axiom-based approach is utilized to partially validate the proposed model.

Findings

A case study is conducted on fused filament fabrication (FFF) process in order to demonstrate the applicability of the proposed technique. The result analysis indicates that the proposed model can determine the contribution of each factor and identify the critical factor causing variability in the FFF process. It can also helps in estimating the sigma level, one of the crucial performance measures of a process.

Research limitations/implications

The proposed methodology is aimed to predict the process quality qualitatively due to limited historical quantitative data. Hence, the quality metric is required to be updated with the help of empirical/field data of PV over a period of operational time. Since the proposed method is based on qualitative analysis framework, the subjectivities of judgments in estimating factor weights are involved. Though a fuzzy-based approach has been used in this paper to minimize such subjectivity, however more advanced MCDM techniques can be developed for factor weight evaluation.

Practical implications

As the proposed methodology uses qualitative data for analysis, it is extremely beneficial while dealing with the issue of scarcity of experimental data.

Social implications

The prediction of the process quality and understanding of difference between product target and achieved reliability before the product fabrication will help the process designer in correcting/modifying the processes in advance hence preventing substantial amount of losses that may happen due to rework and scraping of the products at a later stage.

Originality/value

This qualitative analysis will deal with the issue of data unavailability across the industry. It will help the process designer in identifying root cause of the PV problem and improving performance of the process.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Case study
Publication date: 15 January 2015

Sanjeev Tripathi and Kopal Agrawal Dhandhania

The Olympic Gold Quest (OGQ) was founded as a Non-profit to support Indian athletes in their quest to win Olympic Gold medals by bridging the gap between the best athletes in…

Abstract

The Olympic Gold Quest (OGQ) was founded as a Non-profit to support Indian athletes in their quest to win Olympic Gold medals by bridging the gap between the best athletes in India and in the world. The support from OGQ has been instrumental to India in winning its highest number of medals at any summer Olympics. Buoyed by this success, OGQ has set up a target of achieving eight Olympic medals at the 2016 Rio Olympic Games. With OGQ relying on donations to support the athletes, the challenge is to market the Olympic cause by creating, communicating, and delivering the right offering for its donors.

Details

Indian Institute of Management Ahmedabad, vol. no.
Type: Case Study
ISSN: 2633-3260
Published by: Indian Institute of Management Ahmedabad

Keywords

1 – 5 of 5