Search results

1 – 10 of 29
Article
Publication date: 4 August 2021

Manjula T., Rajeswari R. and Praveenkumar T.R.

The purpose of this paper is to assess the application of graph coloring and domination to solve the airline-scheduling problem. Graph coloring and domination in graphs have…

Abstract

Purpose

The purpose of this paper is to assess the application of graph coloring and domination to solve the airline-scheduling problem. Graph coloring and domination in graphs have plenty of applications in computer, communication, biological, social, air traffic flow network and airline scheduling.

Design/methodology/approach

The process of merging the concept of graph node coloring and domination is called the dominator coloring or the χ_d coloring of a graph, which is defined as a proper coloring of nodes in which each node of the graph dominates all nodes of at least one-color class.

Findings

The smallest number of colors used in dominator coloring of a graph is called the dominator coloring number of the graph. The dominator coloring of line graph, central graph, middle graph and total graph of some generalized Petersen graph P_(n ,1) is obtained and the relation between them is established.

Originality/value

The dominator coloring number of certain graph is obtained and the association between the dominator coloring number and domination number of it is established in this paper.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 October 2020

Anderson A., Karthikeyan A., Ramesh Kumar C., Ramachandran S. and Praveenkumar T.R.

The purpose of this study is to predict the performance and emission characteristics of micro gas turbine engines powered by alternate fuels. The micro gas turbine engine…

Abstract

Purpose

The purpose of this study is to predict the performance and emission characteristics of micro gas turbine engines powered by alternate fuels. The micro gas turbine engine performance, combustion and emission characteristics are analyzed for the jet fuel with different additives.

Design/methodology/approach

The experimental investigation was carried out with Jet A-1 fuel on the gas turbine engines at different load conditions. The primary blends of the Jet A-1 fuels are from canola and solid waste pyrolysis oil. Then the ultrasonication of highly concentrated multiwall carbon nanotubes is carried with the primary blends of canola (Jet-A fuel 70%, canola 20% and 10% ethanol) and P20E (Jet-A 70% fuel, 20% PO and 10% ethanol).

Findings

The consumption of the fuel is appreciable with the blends at a very high static thrust. The 39% reduction in thrust specific fuel consumption associated with a 32% enhance in static thrust with P20E blend among different fuel blends. Moreover, due to the increase in ethanol concentration in the blends PO20E and C20E lead to a 22% rise in thermal efficiency and a 9% increase in higher oxygen content is observed.

Practical implications

The gas turbine engine emits very low emission of gases such as CO, CO2 and NOx by using the fuel blends, which typically reduces the fossil fuel usage limits with reduced pollutants.

Originality/value

The emission of the gas turbine engines is further optimized with the addition of hydrogen in Jet-A fuel. That is leading to high specific fuel exergy and owing to the lower carbon content in the hydrogen fuel when compared with that of the fossil fuels used in gas turbine engines. Therefore, the usage of hydrogen with nanofluids was so promising based on the results obtained for replacing fossil fuels.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 November 2020

Booma Devi, Venkatesh S., Rakesh Vimal and Praveenkumar T.R.

This paper aims to investigate the effect of additives in Jet-A fuel blends, especially on performance, combustion and emission characteristics.

Abstract

Purpose

This paper aims to investigate the effect of additives in Jet-A fuel blends, especially on performance, combustion and emission characteristics.

Design/methodology/approach

Jet-A fuel was formed by using Kay’s and Gruenberg–Nissan mixing rules by adding additive glycerol with TiO2. While measuring the combustion performance, the amount of oxygen content present in fuel and atomization are the key factors to consider. As such, the Jet-A fuel was created by adding additives at different proportion. A small gas turbine engine was used for conducting tests. All tests were carried out at different load conditions for all the fuel blends such as neat Jet-A fuel, G10T (glycerol 10% with 50 ppm TiO2 and Jet-A 90%), G20T (glycerol 10% with 50 ppm TiO2 and Jet-A 90%) and G30T (glycerol 10% with 50 ppm TiO2 and Jet-A 90%).

Findings

From tests, the G20T and G10T produced better results than other blends. The thermal efficiency of the blends of G20T and G10T are 22% and 14% higher than neat Jet-A fuel. Further, the improved static thrust with less fuel consumption was noticed in G20T fuel blend.

Originality/value

The G20T blends showed better performance because of the increased oxygenated compounds in the fuel blends. Moreover, the emission rate of environmentally harmful gases such as NOx, CO and HC was lower than the neat Jet-A fuel. From the results, it is clear that the rate of exergy destruction is more in the combustion chamber than the other components of fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 April 2024

P. Gunasekar, Anderson A. and Praveenkumar T.R.

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and…

Abstract

Purpose

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and testing of bamboo natural fiber-based composites enhanced with SiO2 nanoparticles.

Design/methodology/approach

The investigation involved fabricating specimens with varying nanoparticle compositions (0, 10 and 20%) and conducting tensile, flexural, impact and fracture toughness tests. Results indicated significant improvements in mechanical properties with the addition of nanoparticles, particularly at a 10% composition level.

Findings

This study underscores the potential of natural fiber composites, highlighting their environmental friendliness, cost-effectiveness and improved structural properties when reinforced with nanoparticles. The findings suggest an optimal ratio for nanoparticle integration, emphasizing the critical role of precise mixing proportions in achieving superior composite performance.

Originality/value

The tensile strength, flexural strength, impact resistance and fracture toughness exhibited notable enhancements compared with the 0 and 20% nanoparticle compositions. The 10% composition showed the most promising outcomes, showcasing increased strength across all parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 August 2021

Praveenkumar Thaloor Ramesh, Vijayaraja Kengaiah, Endalkachew Mosisa Gutema, Prabu Velusamy and Dhivya Balamoorthy

The purpose of the study is to design economical shock tube. It is an instrument used for experimental investigations not only related to shock phenomena but also for the behavior…

Abstract

Purpose

The purpose of the study is to design economical shock tube. It is an instrument used for experimental investigations not only related to shock phenomena but also for the behavior of the material when it is subjected to high-speed flow. The material used here in this shock tube is stainless steel ss304 and aluminum. A shock tube consists of two sections, namely, the driver and the driven. The gas in the driven and driver is filled with atmospheric air and nitrogen, respectively, under the predominant condition.

Design/methodology/approach

The focus of the study is on the design and fabrication of shock tubes. a shock tube is a research tool to make an aerodynamic test in the presence of high pressure and temperature by generating moving normal shock waves under controlled conditions.

Findings

The main necessity for instrumentation in the shock tube experiment is to know the velocity of the moving shock wave from which the other parameters can be calculated. the pressure transducers are located in the shock tube in various locations to measure aerodynamic parameters in terms of pressure.

Originality/value

The main objective of this project work is to make an experimental setup to produce supersonic velocity with the readily available material in the market in a highly safe manner.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 28 March 2023

Pedro Antonio Martín-Cervantes and María del Carmen Valls Martínez

This chapter explores how the irruption of plastic materials in contemporary society, in the same way that it facilitated a wide range of human activities, eventually degenerated…

Abstract

This chapter explores how the irruption of plastic materials in contemporary society, in the same way that it facilitated a wide range of human activities, eventually degenerated into a global danger through the contamination of rivers and seas, damaging the human food chain. In doing so, the historical background of this situation has been outlined. Moreover, the countries and areas at present that have polluting plastic substances and those that can be most easily recycled is highlighted. It should be noted that it is precisely in the area of recyclability where most hopes have been placed to counteract plastic contamination aimed at avoiding single-use plastic products. Subsequently, the different positions adopted by the members of society on this problem have been described and, by way of example, the state of the situation in a specific country, Spain, has been summarised.

Details

Socially Responsible Plastic
Type: Book
ISBN: 978-1-80455-987-1

Keywords

Article
Publication date: 13 October 2021

Nithya Subramani, Sangeetha M., Vijayaraja Kengaiah and Sai Prakash

The purpose of this paper is to find the droplets impact on the airplane wing structure. Two kinds of characteristics of the droplet at different velocity and viscosity are…

Abstract

Purpose

The purpose of this paper is to find the droplets impact on the airplane wing structure. Two kinds of characteristics of the droplet at different velocity and viscosity are assumed. The droplet is assumed to be spherical cubic form and it is injected from the convergent divergent nozzle with a passive control.

Design/methodology/approach

This paper presents the results of a numerical simulation of droplet impact on the horizontal surface. The effects of impact parameters are studied. The splash effect of the droplet also visualized. The results are presented in form of stress, strain, displacement magnitude of the droplet.

Findings

Crosswire is used as passive control. The behavior of the droplet impact is observed based on the kinetic energy and the gravitational forces.

Originality/value

The results predict that smooth particle hydrodynamic designed droplet not only depend on the equation of state of the droplet but also the injection velocity from the nozzle. It also determined that droplet velocity is depending on the viscosity of the fluid.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 September 2022

Lawanya T., Vidhya M. and Govindarajan A.

The purpose of this paper to analyze the effect of Soret with heat and mass transfer on an unsteady two-dimensional Magnetohydrodynamics flow through a porous medium under the…

Abstract

Purpose

The purpose of this paper to analyze the effect of Soret with heat and mass transfer on an unsteady two-dimensional Magnetohydrodynamics flow through a porous medium under the influence of the uniform transverse magnetic field in a rotating parallel plate is considered.

Design/methodology/approach

A mathematical model was developed using the slip conditions under unsteady state situations. Analytical expressions for the velocity, temperature and concentration profiles, wall shear stress, rates of heat and mass transfer and volumetric flow rate were obtained and computationally discussed with respect to the non-dimensional parameters. Further, the velocity reduces with increasing Hartmann number M and increases with Grashof number Gr and permeability parameter K.

Findings

It is observed that temperature reduces with an increase in Prandtl number Pr and ω. It is noted that the thermal radiation increases with increase in Soret number Sr, Schmidt number Sc, Prandtl number pr and ω.

Originality/value

Concentration decreases with an increase in radiation parameter R and chemical reaction parameter Kc.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 October 2023

Gokulnath R. and Booma Devi

Diesel has traditionally been considered the best-suited and most widely used fuel in various sectors, including manufacturing industries, power production, automobiles and…

Abstract

Purpose

Diesel has traditionally been considered the best-suited and most widely used fuel in various sectors, including manufacturing industries, power production, automobiles and transportation. However, with the ongoing crisis of fossil fuel inadequacy, the search for alternative fuels and their application in these sectors has become increasingly important. One particularly interesting and beneficial alternative fuel is biodiesel derived from bio sources.

Design/methodology/approach

In this research, an attempt was made to use biodiesel in an unconventional micro gas turbine engine. It will remove the concentric use of diesel engines for power production by improving fuel efficiency as well as increasing the power production rate. Before the fuel is used enormously, it has to be checked in many ways such as performance, emission and combustion analysis experimentally.

Findings

In this paper, a detailed experimental study was made for the use of Spirulina microalgae biodiesel in a micro gas turbine. A small-scale setup with the primary micro gas turbine and secondary instruments such as a data acquisition system and AVL gas analyser. The reason for selecting the third-generation microalgae is due to its high lipid and biodiesel production rate. For the conduction of experimental tests, certain conditions were followed in addition that the engine rotating rpm was varied from 4,000, 5,000 and 6,000 rpm. The favourable and predicted results were obtained with the use of microalgae biodiesel.

Originality/value

The performance and combustion results were not exactly equal or greater for biodiesel blends but close to the values of pure diesel; however, the reduction in the emission of CO was at the appreciable level for the used spirulina microalgae biodiesel. The emission of nitrogen oxides and carbon dioxide was a little higher than the use of pure diesel. This experimental analysis results proved that the use of spirulina microalgae biodiesel is both economical and effective replacement for fossil fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 February 2022

Balaji V., Kaliappan S., Madhuvanesan D.M., Ezhumalai D.S., Boopathi S., Patil Pravin P. and Saiprakash Mani

The purpose of the study is to examine the influence of the corn biofuel on the Jet engine. Each tests were carried out in a small gas turbine setup. The performance…

Abstract

Purpose

The purpose of the study is to examine the influence of the corn biofuel on the Jet engine. Each tests were carried out in a small gas turbine setup. The performance characteristics of thrust, thrust-specific fuel consumption, exhaust gas temperature and emission characteristics of Carbon monoxide(CO), Carbon dioxide (CO2), Oxygen (O2), Unburned hydrocarbons (UHC) and Nitrogen of oxides (NO) emissions were measured and compared with Jet-A fuel to find the suitability of the biofuel used.

Design/methodology/approach

Upgrading and using biofuels in aviation sector have been emerging as a fruitful method to diminish the CO emission into the atmosphere. This research paper explores the possibility of using nanoparticles-enriched bio-oil as a fuel for jet engines. The biofuel taken is corn oil and the added nanoparticles are Al2O3.

Findings

The biofuel blends used are B0 (100% Jet-A fuel), B10 (10 % corn oil biofuel + 90% Jet-A fuel), B20 (20% corn oil biofuel + 80% Jet-A fuel) and B30 (30% corn oil biofuel + 70% Jet-A fuel). All fuel blends were mixed with the moderate dosage level of 30 ppm. All tests were conducted at different rpm as 50,000, 60,000, 70,000 and 80,000 rpm.

Originality/value

The results proved that within the lower limit, use of biofuel increased the performance characteristics and reduced the emission characteristics except the emission of NO. The moderate-level biofuel with Jet-A fuel showed the equally better performance to the neat Jet-A fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 29