Search results

1 – 7 of 7
Article
Publication date: 20 January 2023

Nishchay Tiwari, Pawel Flaszynski, Thanushree Suresh and Oskar Szulc

The purpose of this paper is to investigate and compare the effects of rod and vane-type vortex generators for wind turbine applications. In large wind turbine rotors, an attached…

Abstract

Purpose

The purpose of this paper is to investigate and compare the effects of rod and vane-type vortex generators for wind turbine applications. In large wind turbine rotors, an attached flow at all sections along the span direction is difficult to achieve which leads to an increase in aerodynamic losses, noise generation, and fatigue stress. Therefore, flow control strategies such as vortex generators (VGs) are beneficial to improve performance.

Design/methodology/approach

The benefits of the application of rod-type vortex generators (RVGs) to control flow separation on a wind turbine airfoil are assessed numerically using computational fluid dynamics (CFD). The validation of the computational model is conducted against the experimental data available for the DU96-W-180 wind turbine airfoil equipped with 44 RVGs. In addition, a revised wind tunnel angle of attack (AoA) calibration procedure (based on CFD) is proposed that is applicable for separated flows. A comparison of the RVGs to the conventional vane-type vortex generators (VVGs) is presented for inflow velocity of 30 m/s and AoA leading to significant flow separation. A parametric evaluation of the geometric characteristics of both types of VGs is conducted to quantify the generated streamwise vortices.

Findings

The comparison of the induced flow structures and aerodynamic efficiency enhancements proves that RVGs may be used as an alternative to the more conventional VVGs applied on wind turbine blades for boundary layer separation control.

Originality/value

A new type of VG (rod) has been investigated and compared against conventional VG (vanes) for wind turbine applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Javier Martinez Suarez, Pawel Flaszynski and Piotr Doerffer

The purpose of this paper is to describe numerical investigations focused on the reduction of separation and the aerodynamic enhancement of wind turbine blades by a rod vortex…

Abstract

Purpose

The purpose of this paper is to describe numerical investigations focused on the reduction of separation and the aerodynamic enhancement of wind turbine blades by a rod vortex generator (RVG).

Design/methodology/approach

A flow modelling approach through the use of a Reynolds-averaged Navier–Stokes solver is used. The numerical tools are validated with experimental data for the NREL Phase VI rotor and the S809 aerofoil. The effect of rod vortex generator’s (RVG) configuration on aerofoil aerodynamic performance, flow structure and separation is analysed. RVGs’ chordwise locations and spanwise distance are considered, and the optimum configuration of the RVG is applied to the wind turbine rotor.

Findings

Results show that streamwise vortices created by RVGs lead to modification of flow structure in boundary layer. As a result, the implementation of RVGs on aerofoil has proven to decrease the flow separation and enhance the aerodynamic performance of aerofoils. The effect on flow structure and aerodynamic performance has shown to be dependent on dimensions, chordwise location and spanwise distribution of rods. The implementation of devices with the optimum configuration has shown to increase aerodynamic performance and to significantly reduce separation for selected conditions. Application of rods to the wind turbine rotor has proven to avoid the spanwise penetration of flow separation where applied, leading to reduction of flow separation and to aerodynamic enhancement.

Originality/value

The proposed RVGs have shown potential to enhance the aerodynamic performance of wind turbine rotors and profiles, making devices an alternative solution to the classical vortex generators for wind turbine applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2018

Marcin Kurowski, Ryszard Szwaba, Janusz Telega, Pawel Flaszynski, Fernando Tejero and Piotr Doerffer

This paper aims to present the results of experimental and numerical research on heat transfer distribution under the impinging jets at various distances from the wall and high…

117

Abstract

Purpose

This paper aims to present the results of experimental and numerical research on heat transfer distribution under the impinging jets at various distances from the wall and high jet velocity. This work is a part of the INNOLOT Program financed by National Centre for Research and Development.

Design/methodology/approach

The air jets flow out from the common pipe and impinge on a surface which is cooled by them, and in this way, all together create a model of external cooling system of low-pressure gas turbine casing. Measurements were carried out for the arrangement of 26 in-line jets with orifice diameter of 0.9 mm. Heat transfer distribution was investigated for various Reynolds and Mach numbers. The cooled wall, made of transparent PMMA, was covered with a heater foil on which a layer of self-adhesive liquid crystal foil was placed. The jet-to-wall distance was set to h = from 4.5 to 6 d.

Findings

The influence of various Reynolds and Mach numbers on cooled flat plate and jet-to-wall distance in terms of heat transfer effectiveness is presented. Experimental results used for the computational fluid dynamics (CFD) model development, validation and comparison with numerical results are presented.

Practical implications

Impinging air jets is a commonly used technique to cool advanced turbines elements, as it produces large convection enhancing the local heat transfer, which is a critical issue in the development of aircraft engines.

Originality/value

The achieved results present experimental investigations carried out to study the heat transfer distribution between the orthogonally impinging jets from long round pipe and flat plate. Reynolds number based on the jet orifice exit conditions was varied between 2,500 and 4,000; meanwhile, for such Re, the flow velocity in jets was particularly very high, changing from M = 0.56 to M = 0.77. Such flow conditions combination, i.e. the low Reynolds number and very high flow velocity cannot be found in the existing literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 October 2018

Tomasz Kwiatkowski, Pawel Flaszyński and Jerzy Zoltak

The simulations of grid-resolved rod vortex generators (RVGs) require high computational cost and time. Additionally, the computational mesh topology must be adjusted to rods…

Abstract

Purpose

The simulations of grid-resolved rod vortex generators (RVGs) require high computational cost and time. Additionally, the computational mesh topology must be adjusted to rods geometries. The purpose of this study is to propose the new source term model for RVG.

Design/methodology/approach

The model was proposed by modification of Bender, Anderson, Yagle (BAY) model used to predict flows around different type of vortex generators (VGs) – vanes. Original BAY model was built on lifting line theory. The proposed model was implemented in ANSYS Fluent by means of the user-defined function technique. Additional momentum and energy sources are imposed to transport equations.

Findings

The computational results of source term model were validated against experimental data and numerical simulation results for grid-resolved rod. It was shown that modified BAY model can be successfully used for RVG in complex cases. An example of BAY model application for RVG on transonic V2C airfoil with strongly oscillating shock waves is presented. Aerodynamic performance predicted numerically by means of both approaches (grid resolved RVG and modeled) is in good agreement, what indicates application opportunity of the proposed model to complex cases.

Practical implications

Modified BAY model can be used to simulate the influence of RVGs in complex real cases. It allows for time/cost reduction if the location or distribution of RVG has to be optimized on a profile, wing or in the channel.

Originality/value

In the paper, the new modification of BAY model was proposed to simulate RVGs. The presented results are innovative because of original approach to model RVGs.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 May 2018

Fernando Tejero Embuena, Piotr Doerffer, Pawel Flaszynski and Oskar Szulc

Helicopter rotor blades are usually aerodynamically limited by the severe conditions present in every revolution: strong shock wave boundary layer interaction on the advancing…

Abstract

Purpose

Helicopter rotor blades are usually aerodynamically limited by the severe conditions present in every revolution: strong shock wave boundary layer interaction on the advancing side and dynamic stall on the retreating side. Therefore, different flow control strategies might be applied to improve the aerodynamic performance.

Design/methodology/approach

The present research is focussed on the application of passive rod vortex generators (RVGs) to control the flow separation induced by strong shock waves on helicopter rotor blades. The formation and development in time of the streamwise vortices are also investigated for a channel flow.

Findings

The proposed RVGs are able to generate streamwise vortices as strong as the well-known air-jet vortex generators. It has been demonstrated a faster vortex formation for the rod type. Therefore, this flow control device is preferred for applications in which a quick vortex formation is required. Besides, RVGs were implemented on helicopters rotor blades improving their aerodynamic performance (ratio thrust/power consumption).

Originality/value

A new type of vortex generator (rod) has been investigated in several configurations (channel flow and rotor blades).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 December 2023

Oskar Szulc, Piotr Doerffer, Pawel Flaszynski and Marianna Braza

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Abstract

Purpose

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Design/methodology/approach

The concept is based on the introduction of a tangentially moving wall upstream of the shock wave and in the interaction region. The SBLI control mechanism may be implemented as a closed belt floating on an air cushion, sliding over two cylinders and forming the outer skin of the suction side of the airfoil. The presented exploratory numerical study is conducted with SPARC solver (steady 2D RANS). The effect of the moving wall is presented for the NACA 0012 airfoil operating in transonic conditions.

Findings

To assess the accuracy of obtained solutions, validation of the computational model is demonstrated against the experimental data of Harris, Ladson & Hill and Mineck & Hartwich (NASA Langley). The comparison is conducted not only for the reference (impermeable) but also for the perforated (permeable) surface NACA 0012 airfoils. Subsequent numerical analysis of SBLI control by moving wall confirms that for the selected velocity ratios, the method is able to improve the shock-upstream boundary layer and counteract flow separation, significantly increasing the airfoil aerodynamic performance.

Originality/value

The moving wall concept as a means of normal shock wave–turbulent boundary layer interaction and shock-induced separation control has been investigated in detail for the first time. The study quantified the necessary operational requirements of such a system and practicable aerodynamic efficiency gains and simultaneously revealed the considerable potential of this promising idea, stimulating a new direction for future investigations regarding SBLI control.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 November 2018

Filip Wasilczuk, Pawel Flaszynski, Piotr Kaczynski, Ryszard Szwaba, Piotr Doerffer and Krzysztof Marugi

The purpose of the study is to measure the mass flow in the flow through the labyrinth seal of the gas turbine and compare it to the results of numerical simulation. Moreover the…

Abstract

Purpose

The purpose of the study is to measure the mass flow in the flow through the labyrinth seal of the gas turbine and compare it to the results of numerical simulation. Moreover the capability of two turbulence models to reflect the phenomenon will be assessed. The studied case will later be used as a reference case for the new, original design of flow control method to limit the leakage flow through the labyrinth seal.

Design/methodology/approach

Experimental measurements were conducted, measuring the mass flow and the pressure in the model of the labyrinth seal. It was compared to the results of numerical simulation performed in ANSYS/Fluent commercial code for the same geometry.

Findings

The precise machining of parts was identified as crucial for obtaining correct results in the experiment. The model characteristics were documented, allowing for its future use as the reference case for testing the new labyrinth seal geometry. Experimentally validated numerical model of the flow in the labyrinth seal was developed.

Research limitations/implications

The research studies the basic case, future research on the case with a new labyrinth seal geometry is planned. Research is conducted on simplified case without rotation and the impact of the turbine main channel.

Practical implications

Importance of machining accuracy up to 0.01 mm was found to be important for measuring leakage in small gaps and decision making on the optimal configuration selection.

Originality/value

The research is an important step in the development of original modification of the labyrinth seal, resulting in leakage reduction, by serving as a reference case.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 7 of 7