Search results

1 – 6 of 6
Article
Publication date: 4 April 2016

Mojtaba Maghrebi, Ali Shamsoddini and S. Travis Waller

The purpose of this paper is to predict the concrete pouring production rate by considering both construction and supply parameters, and by using a more stable learning method.

Abstract

Purpose

The purpose of this paper is to predict the concrete pouring production rate by considering both construction and supply parameters, and by using a more stable learning method.

Design/methodology/approach

Unlike similar approaches, this paper considers not only construction site parameters, but also supply chain parameters. Machine learner fusion-regression (MLF-R) is used to predict the production rate of concrete pouring tasks.

Findings

MLF-R is used on a field database including 2,600 deliveries to 507 different locations. The proposed data set and the results are compared with ANN-Gaussian, ANN-Sigmoid and Adaboost.R2 (ANN-Gaussian). The results show better performance of MLF-R obtaining the least root mean square error (RMSE) compared with other methods. Moreover, the RMSEs derived from the predictions by MLF-R in some trials had the least standard deviation, indicating the stability of this approach among similar used approaches.

Practical implications

The size of the database used in this study is much larger than the size of databases used in previous studies. It helps authors draw their conclusions more confidently and introduce more generalised models that can be used in the ready-mixed concrete industry.

Originality/value

Introducing a more stable learning method for predicting the concrete pouring production rate helps not only construction parameters, but also traffic and supply chain parameters.

Article
Publication date: 8 September 2022

Johnny Kwok Wai Wong, Mojtaba Maghrebi, Alireza Ahmadian Fard Fini, Mohammad Amin Alizadeh Golestani, Mahdi Ahmadnia and Michael Er

Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes…

Abstract

Purpose

Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes. The state-of-the-art low-light image enhancement method provides promising image enhancement results. However, they generally require a longer execution time to complete the enhancement. This study aims to develop a refined image enhancement approach to improve execution efficiency and performance accuracy.

Design/methodology/approach

To develop the refined illumination enhancement algorithm named enhanced illumination quality (EIQ), a quadratic expression was first added to the initial illumination map. Subsequently, an adjusted weight matrix was added to improve the smoothness of the illumination map. A coordinated descent optimization algorithm was then applied to minimize the processing time. Gamma correction was also applied to further enhance the illumination map. Finally, a frame comparing and averaging method was used to identify interior site progress.

Findings

The proposed refined approach took around 4.36–4.52 s to achieve the expected results while outperforming the current low-light image enhancement method. EIQ demonstrated a lower lightness-order error and provided higher object resolution in enhanced images. EIQ also has a higher structural similarity index and peak-signal-to-noise ratio, which indicated better image reconstruction performance.

Originality/value

The proposed approach provides an alternative to shorten the execution time, improve equalization of the illumination map and provide a better image reconstruction. The approach could be applied to low-light video enhancement tasks and other dark or poor jobsite images for object detection processes.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 1 June 2023

Johnny Kwok Wai Wong, Fateme Bameri, Alireza Ahmadian Fard Fini and Mojtaba Maghrebi

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically…

Abstract

Purpose

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically conducted by visual inspection, making them time-consuming and error prone. This paper aims to propose a video-based deep-learning approach to the automated detection and counting of building materials.

Design/methodology/approach

A framework for accurately counting building materials at indoor construction sites with low light levels was developed using state-of-the-art deep learning methods. An existing object-detection model, the You Only Look Once version 4 (YOLO v4) algorithm, was adapted to achieve rapid convergence and accurate detection of materials and site operatives. Then, DenseNet was deployed to recognise these objects. Finally, a material-counting module based on morphology operations and the Hough transform was applied to automatically count stacks of building materials.

Findings

The proposed approach was tested by counting site operatives and stacks of elevated floor tiles in video footage from a real indoor construction site. The proposed YOLO v4 object-detection system provided higher average accuracy within a shorter time than the traditional YOLO v4 approach.

Originality/value

The proposed framework makes it feasible to separately monitor stockpiled, installed and waste materials in low-light construction environments. The improved YOLO v4 detection method is superior to the current YOLO v4 approach and advances the existing object detection algorithm. This framework can potentially reduce the time required to track construction progress and count materials, thereby increasing the efficiency of work-in-progress evaluation. It also exhibits great potential for developing a more reliable system for monitoring construction materials and activities.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 30 March 2021

Alireza Ahmadian Fard Fini, Mojtaba Maghrebi, Perry John Forsythe and Travis Steven Waller

Measuring onsite productivity has been a substance of debate in the construction industry, mainly due to concerns about accuracy, repeatability and unbiasedness. Such…

Abstract

Purpose

Measuring onsite productivity has been a substance of debate in the construction industry, mainly due to concerns about accuracy, repeatability and unbiasedness. Such characteristics are central to demonstrate construction speed that can be achieved through adopting new prefabricated systems. Existing productivity measurement methods, however, cannot cost-effectively provide solid and replicable evidence of prefabrication benefits. This research proposes a low-cost automated method for measuring onsite installation productivity of prefabricated systems.

Design/methodology/approach

Firstly, the captured ultra-wide footages are undistorted by extracting the curvature contours and performing a developed meta-heuristic algorithm to straighten these contours. Then a preprocessing algorithm is developed that could automatically detect and remove the noises caused by vibrations and movements. Because this study aims to accurately measure the productivity the noise free images are double checked in a specific time window to make sure that even a tiny error, which have not been detected in the previous steps, will not been amplified through the process. In the next step, the existing side view provided by the camera is converted to a top view by using a spatial transformation method. Finally, the processed images are compared with the site drawings in order to detect the construction process over time and report the measured productivity.

Findings

The developed algorithms perform nearly real-time productivity computations through exact matching of actual installation process and digital design layout. The accuracy and noninterpretive use of the proposed method is demonstrated in construction of a multistorey cross-laminated timber building.

Originality/value

This study uses footages of an already installed surveillance camera where the camera's features are unknown and then image processing algorithms are deployed to retrieve accurate installation quantities and cycle times. The algorithms are almost generalized and versatile to be adjusted to measure installation productivity of other prefabricated building systems.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 September 2015

Mojtaba Maghrebi, Claude Sammut and S. Travis Waller

The purpose of this paper is to study the implementation of machine learning (ML) techniques in order to automatically measure the feasibility of performing ready mixed concrete…

Abstract

Purpose

The purpose of this paper is to study the implementation of machine learning (ML) techniques in order to automatically measure the feasibility of performing ready mixed concrete (RMC) dispatching jobs.

Design/methodology/approach

Six ML techniques were selected and tested on data that was extracted from a developed simulation model and answered by a human expert.

Findings

The results show that the performance of most of selected algorithms were the same and achieved an accuracy of around 80 per cent in terms of accuracy for the examined cases.

Practical implications

This approach can be applied in practice to match experts’ decisions.

Originality/value

In this paper the feasibility of handling complex concrete delivery problems by ML techniques is studied. Currently, most of the concrete mixing process is done by machines. However, RMC dispatching still relies on human resources to complete many tasks. In this paper the authors are addressing to reconstruct experts’ decisions as only practical solution.

Details

Engineering, Construction and Architectural Management, vol. 22 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 April 2022

Mojtaba Fadaei, Mohsen Izadi, Ehsanolah Assareh and Ali Ershadi

This study aims to evaluate the melting process of the phase-change RT-35 material in a shell and tube heat exchanger saturated with a porous medium. Titanium porous media with…

Abstract

Purpose

This study aims to evaluate the melting process of the phase-change RT-35 material in a shell and tube heat exchanger saturated with a porous medium. Titanium porous media with isotropic and inhomogeneous structures are studied. The considered tubes in the shell and tube exchanger are made of copper with specific thicknesses. The phase-change material has a non-Newtonian behavior and follows the endorsed Carreau–Yasuda Model.

Design/methodology/approach

The enthalpy–porosity method is used for modeling of the melting process. The governing equations were transferred to their dimensionless forms. Finally, the equations are solved by applying the Galerkin finite element method.

Findings

The findings for different values of the relative permeability (K*) and permeability deviation angle (λ) are represented in the forms of charts, streamlines and constant temperature contours. The considerable effects of the relative permeability (K*) and deviation angle (λ) on the flow line patterns of the melting phase-change material are some of the significant achievements of this works.

Originality/value

This study was conducted using data from relevant research articles provided by reputable academic sources. The data included in this manuscript have not been published previously and are not under consideration by any other journal.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 6 of 6