Search results

1 – 4 of 4
Article
Publication date: 15 March 2024

Audu Ibrahim Ali, Mohd Kameil Abdul Hamid, Mohd Azman Bin Abas, Mohd Farid Muhamad Said, Anthony Chukwunonso Opia, Izhari Izmi Bin Mazali and Zul Hilmi Bin Che Daud

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study…

Abstract

Purpose

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study aims to develop, characterize and test the base ficus carica oil (fig oil) for its ethylene vinyl acetate copolymer (EVA) and sodium dodecylbenzene sulfonate (SDBS) content.

Design/methodology/approach

The sample characterization was done using the Fourier transmission infrared spectrum, whereas the morphologies of the EVA, SDBS particles and lubricated surfaces were carried out under scanning electron microscope equipment. To ensure the homogeneity of the solution (base oil and additives), the formulations were subjected to the sonication process. The anti-friction and anti-wear properties of EVA and SDBS particles as lubricant additives were investigated using a ball on a flat high-frequency reciprocating rig tribo-tester.

Findings

According to the findings, the base oil’s anti-friction and anti-wear capabilities can be greatly enhanced by the additions. revealed that the best results were obtained when 1.2% EVA + 2% SDBS was applied for the examination of wear (597.8 µm) and friction coefficient (0.106). Commercial references were used, nevertheless, and the results were excellent. This is because the particles in the contact area during lubrication have strong solubility and quickly penetrate the contact zone. The lubricating mechanisms were explained by a tribological model of the EVA + SDBS and SDBS particles.

Research limitations/implications

The coefficient of friction and wear reduction caused by the use of the additives will certainly enhance system performance and protect the machine components from excessive wear that could cause damage or failure.

Originality/value

The originality and uniqueness of this work are officially affirmed by the authors. The authors’ autonomous and original contribution to the development of sustainable lubrication is represented in this work. To the best of the authors’ knowledge, no other study has been published or made publicly available that duplicates the precise scope and goals of our research, and this conclusion is based on a thorough literature assessment.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 July 2019

Muhammad Arif Dandan, Syahrullail Samion, Nurul Farhanah Azman, Fazila Mohd Zawawi, Mohd Kameil Abdul Hamid and Mohamad Nor Musa

The purpose of this paper is to study the influence of polymeric viscosity improver on the tribological performance of palm kernel methyl ester (PKME).

Abstract

Purpose

The purpose of this paper is to study the influence of polymeric viscosity improver on the tribological performance of palm kernel methyl ester (PKME).

Design/methodology/approach

Tribological performances of the PKME added with the various concentration of ethylene-vinyl acetate copolymer (EVA) were evaluated using four-ball tribotester under extreme pressure condition. The morphologies of the worn surfaces were observed by using the optical microscope.

Findings

The addition of polymeric viscosity improver (EVA copolymer) has produced positive results towards the tribological properties of PKME. In total, 4 per cent of EVA copolymer is found as the optimum concentration by improving the friction reducing properties and anti-wear behaviour due to the formation of film thickness between two rubbing surfaces.

Originality/value

This work might contribute to the development of vegetable oils as a new source of environmental-friendly lubricant.

Details

International Journal of Structural Integrity, vol. 10 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 September 2023

Aiman Yahaya, Syahrullail Samion and Mohd Kameil Abdul Hamid

The purpose of this study is to investigate the use of micro-pits technology to the problem of tribological performance in a sliding motion.

Abstract

Purpose

The purpose of this study is to investigate the use of micro-pits technology to the problem of tribological performance in a sliding motion.

Design/methodology/approach

Vegetable oil is a sustainable and economically viable alternative to both mineral and synthetic oils, offering significant savings in both the cost of research and manufacturing. To solve the depriving issue and boost lubrication film thickness, the micro-pits on the surface may function as reservoirs that provide the oil to the contact inlet area. In this research, an aluminium block is used as the workpiece material in an evaluation of a through pin-on-disc tribotester. Lubricating oil in the form of super olein (SO) was used in the experiment.

Findings

The results show that the friction performance during a rubbing process between a hemispherical pin and an aluminium block lubricated with SO using aluminium alloy materials, AA5083, was significantly improved.

Originality/value

In this study, a material that breaks down called SO, which is derived from the fractionation of palm olein, was used to use a modified aluminium micro-pit sample that will serve as a lubricant reservoir in pin-on-disc tribotester.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0200/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 July 2019

Nurul Farhanah Azman, Syahrullail Samion, Muhammad Amirrul Amin Moen, Mohd Kameil Abdul Hamid and Mohamad Nor Musa

The purpose of this paper is to investigate the anti-wear (AW) and extreme pressure (EP) performances of CuO and graphite nanoparticles as a palm oil additive.

Abstract

Purpose

The purpose of this paper is to investigate the anti-wear (AW) and extreme pressure (EP) performances of CuO and graphite nanoparticles as a palm oil additive.

Design/methodology/approach

In this study, the AW and EP performances of CuO and graphite nanoparticles as additives in palm oil were evaluated using four ball tribotester in accordance to ASTM D4172 and ASTM D2783, respectively. The wear worn surfaces of the steel balls were analysed using high resolution microscope.

Findings

The results obtained demonstrate that CuO and graphite nanoparticles improved the AW and EP performances of the palm oil up to 2.77 and 12 per cent, respectively. The graphite nanoparticles provide better AW and EP performance than that of CuO nanoparticles.

Originality/value

This demonstrates the potential of CuO and graphite nanoparticles for improving AW and EP performances of palm oil base lubricant. Different morphology of nanoparticles will affect the AW and EP performances of nanolubricants.

Details

International Journal of Structural Integrity, vol. 10 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 4 of 4