Search results

1 – 2 of 2
Article
Publication date: 22 June 2023

Simon Bagy, Michel Libsig, Bastien Martinez and Baptiste Masse

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Abstract

Purpose

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Design/methodology/approach

The performance of a gliding projectile concept is assessed using an aeroballistic workflow, comprising aerodynamic characterization and flight trajectory computation. First, a single-objective optimization is run with genetic algorithms to find the maximal attainable range for this type of projectile. Then, a multi-objective formulation of the problem is proposed to consider the compromise between range and time of flight. Finally, the aerodynamic model used for the gliding ammunition is evaluated, in comparison with direct computational fluid dynamics (CFD) computations.

Findings

Applying single-objective range maximization results in a great improvement of the reachable distance of the projectile, at the expense of the flight duration. Therefore, a multi-objective optimization is implemented in a second time, to search sets of parameters resulting in an optimal compromise between fire range and flight time. The resulting Pareto front can be directly interpreted and has the advantage of being useful for tactical decisions.

Research limitations/implications

The main limitation of the work concerns the aerodynamic model of the gliding ammunition, which was initially proposed as an alternative to reduce significantly the computational cost of aerodynamic characterization and enable optimizations. When compared with direct CFD computations, this method appears to induce an overestimation of the range. This suggests future evolution to improve the accuracy of this approach.

Originality/value

To the best of the authors’ knowledge, this paper presents an original ammunition concept for howitzers, aiming at extending the range of fire by using lifting surfaces and guidance. In addition, optimization techniques are used to improve the range of such projectile configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 April 2023

Laurène Muller, Michel Libsig, Yannick Bailly and Jean-Claude Roy

This paper aims to propose a dedicated measurement methodology able to simultaneously determine the stability derivative Cmα̇ and the pitch damping coefficient sum Cmq + Cmα̇ in a…

Abstract

Purpose

This paper aims to propose a dedicated measurement methodology able to simultaneously determine the stability derivative Cmα̇ and the pitch damping coefficient sum Cmq + Cmα̇ in a wind tunnel using a single and almost non-intrusive metrological setup called MiRo.

Design/methodology/approach

To assess the MiRo method’s reliability, repeatability and accuracy, the measurements obtained with this technique are compared to other sources like aerodynamic balance measurements, alternative wind tunnel measurements, Ludwieg tube measurements, free-flight measurements and computational fluid dynamics (CFD) simulations. Two different numerical approaches are compared and used to validate the MiRo method. The first numerical method forces the projectile to describe a pure oscillation motion with small amplitude along the pitch axis during a rectilinear flight, whereas the second numerical approach couples the one degrees of freedom simulation motion equations with CFD methods.

Findings

MiRo, a novel and almost non-intrusive technique for dynamic wind tunnel measurements, has been validated by comparison with five other experimental and numerical methodologies. Despite two completely different approaches, both numerical methods give almost identical results and show that the holding system has nearly no impact on the dynamic aerodynamic coefficients. Therefore, it could be assessed that the attitude of MiRo model in the wind tunnel is very close to the free-flight one.

Originality/value

The MiRo method allows studying the attitude of a projectile in a wind tunnel with the least possible impact on the flow around a model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2