Search results

1 – 5 of 5
Article
Publication date: 4 November 2020

Liliya Frolova and Tatyana Butyrina

The purpose of this paper is to study the patterns of formation of anti-corrosion properties, the development of compositions for pigments by using the method of co-precipitation…

Abstract

Purpose

The purpose of this paper is to study the patterns of formation of anti-corrosion properties, the development of compositions for pigments by using the method of co-precipitation and subsequent heat treatment.

Design/methodology/approach

To obtain co-precipitated hydroxides, aqueous solutions of salts were used. The conditions of synthesis varied according to the following parameters: the nature of the starting salts of metals; and the ratio of metal cations. The anticorrosive activity of the pigments was evaluated by the potentiodynamic method, by comparing the anodic and cathodic polarization curves, and calculated potentials and corrosion currents on the basis of regions of Tafel on curves. Polarization curves were obtained by using Potentiostat/Galvanostat/ZRA Gamry, which connected to the PC, and by using the program Gamry Framework. The measurement results were processed by using the method of simplex-lattice planning. X-ray diffractograms of pigments were recorded on a DRON – 2.0 diffractometer (monochromatic copper radiation with a nickel filter).

Findings

The paper deals with the results of research the dependence of colour characteristics and anticorrosion properties of synthesized compositions on their nature and composition. The presence of aluminium cations leads to the formation of solid solutions of ferrum and aluminium oxyhydroxides.

Originality/value

The main technological properties of pigments are determined by the anionic and cationic composition. Colour characteristics are determined by the cation-chromophore. The anti-corrosive properties of non-calcined pigments are determined to a greater extent by the presence of the formed hydroxyl ions and the composition of the compounds. The greatest protective effect is observed when using double compounds of metals, the dissociation constants of which differ significantly. The protective effect is mainly determined by the slowdown of the anode process. Anions containing aluminium atoms accelerate the corrosion processes.

Details

Pigment & Resin Technology, vol. 50 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 September 2017

Liliya Frolova, Alexander Pivovarov and Tatyana Butyrina

The purpose of this work is to study the patterns of pigment colour formation and to develop metal compositions for obtaining spinels using the precipitation and heat treatment…

Abstract

Purpose

The purpose of this work is to study the patterns of pigment colour formation and to develop metal compositions for obtaining spinels using the precipitation and heat treatment methods.

Design/methodology/approach

Precursor materials were prepared using co-precipitation method. Phase composition of pigments were determined by X-ray diffraction. Colour of pigments was determined spectrophotometry. Modelling of colour formation was performed using simplex method. Planning in the future to carry out full synthesis of pigments of blue, red and yellow colours.

Findings

The paper deals with the results of theoretical and experimental research on the synthesis pigments of blue, red and yellow colours based on Fe-Co-Al-O spinel. The influence of the chromophore cation content and the heat treatment temperature on optical and colour characteristics of pigments were studied.

Originality/value

The resulting composition-property diagrams make it possible to evaluate the effect of chromophore cations and heat treatment on the colour formation for Fe2O3-Al2O3-CoO system. Crystal-phase composition of the pigments is installed and its relationship with the optical colour characteristics. That makes it possible carry out targeted synthesis of pigments blue, red and yellow colours in further. The phase composition of pigments and its relationship with optical and colour properties has been established thus enabling the directed synthesis of blue, red and yellow pigments.

Details

Pigment & Resin Technology, vol. 46 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 December 2022

Liliya Frolova and Olga Sergeyeva

This paper aims to develop a simple and efficient plasma technology for the production of copper (I) oxide with the ability to control the morphology and size of Cu2O particles…

Abstract

Purpose

This paper aims to develop a simple and efficient plasma technology for the production of copper (I) oxide with the ability to control the morphology and size of Cu2O particles. To achieve this goal, the phase composition of the precipitate formed was estimated, the composition and size of the obtained particles were determined and Pourbaix diagrams were constructed.

Design/methodology/approach

An integrated approach combining thermodynamic calculations and experimental research methods is used. The constructed Pourbaix diagram makes it possible to suggest the phase composition of the sediment. The use of cyclic voltammetry made it possible to establish the mechanism of deposit formation on the cathode during the treatment of the solution with contact nonequilibrium low-temperature plasma. The resulting product was examined using X-ray phase analysis and scanning electron microscopy.

Findings

The article presents the results of theoretical and experimental studies on the synthesis of copper (II) oxide. The influence of the parameters of plasma-chemical synthesis on the shape and phase composition of the deposits formed has been studied.

Originality/value

A plasma-chemical technology for obtaining copper oxide in the form of single crystals of a regular faceted shape is proposed. The mechanism of formation of copper oxide has been established by cyclic voltammetry. The constructed Pourbaix diagrams show the area of existence of the product.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 August 2019

Liliya Frolova

The purpose of this paper is to study the process of coprecipitation of polyhydroxocomplexes of nickel and aluminum from solutions of nickel (Ni) (II) sulfate and aluminum (Al…

Abstract

Purpose

The purpose of this paper is to study the process of coprecipitation of polyhydroxocomplexes of nickel and aluminum from solutions of nickel (Ni) (II) sulfate and aluminum (Al) (III) sulfate with caustic soda and to study the conversion process to nickel aluminate and to check its properties.

Design/methodology/approach

For the thermodynamic analysis of the precipitation process, the software package MEDUSA was used. The dependences of the electrical conductivity, pH and residual concentrations as functions of the OH/Me ratio were obtained. Using X-ray phase analysis, spectroscopic analysis and derivatographic analysis, the properties of the products obtained were studied. The effects of OH/Me ratio and molar ratio cation of reagents on the physicochemical properties of the products were analyzed.

Findings

The paper deals with the results of theoretical and experimental research on the synthesis pigments of blue and green colors based on Ni-Al spinel. The influence of the molar ratio cation content on optical and color characterise of pigments were studied.

Originality/value

The original complex method of studying the processes of co-precipitation of cations in the form of hydroxides is proposed. pH precipitation of aluminum hydroxide and nickel are different. It is interesting to study their co-precipitation. The resulting single-phase product is a precursor of nickel aluminate over a wide range of cation ratios. The dependences of the electrical conductivity, pH and residual concentrations as functions of the OH/Me ratio were obtained.

Details

Pigment & Resin Technology, vol. 48 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 December 2020

Aleksandr Viktorovich Zaichuk, Aleksandra Andreevna Amelina, Yurii Sergeevich Hordieiev, Liliya Frolova and Viktoriia Dmitrievna Ivchenko

The purpose of this paper is to conduct the directed synthesis of blue-colour aluminate spinel pigments based on spent aluminium–cobalt–molybdenum (ACM) catalyst and to study…

Abstract

Purpose

The purpose of this paper is to conduct the directed synthesis of blue-colour aluminate spinel pigments based on spent aluminium–cobalt–molybdenum (ACM) catalyst and to study peculiar features of mineral formation processes and changes in their colour indices depending on composition and firing temperature.

Design/methodology/approach

Aluminate spinel ceramic pigments with specified colour indices were synthesised by directed formation of their mineral composition and identification of the most rational technological parameters of production. Mineral composition of synthesised pigments was evaluated by X-ray phase analysis. The colour indices of pigments and pigment-containing glaze coatings were studied on the comparator colour. The chemical resistance of pigments was determined by loss of their weight loss after boiling in 1 N hydrochloric acid solution and 1 N sodium hydroxide solution.

Findings

Peculiar features of formation of the mineral composition of aluminate spinel pigments based on the ACM catalyst were studied. The expediency of using magnesium and zinc oxides in their composition has been proved. It is found that for the formation of stable pigments of intense blue colour, a concentration of cobalt (II) oxide in the amount of 0.5 mol is sufficient, which is 23.1 Wt.%. The colour of such pigments is determined by the ratios of cobalt, magnesium and zinc aluminates, which form a spinel solid solution.

Practical implications

The use of developed aluminate spinel pigments provides obtaining of high-quality glass coatings of blue colour, in particular, for ceramics.

Originality/value

Aluminium oxide in the spent ACM catalyst is predominantly in the active form (of amorphous aluminium hydroxide and y-Al2O3). This is a prerequisite for the use of this waste material as a complete substitute for chemically pure Al2O3 in the technology of aluminate spinel pigments and reduction of their firing temperature. Besides, spent ACM catalyst already contains 5 Wt.% of expensive cobalt (II) oxide in the form of stable colour-bearing phase CoAl2O4.

Details

Pigment & Resin Technology, vol. 50 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 5 of 5