Search results

1 – 3 of 3
Open Access
Article
Publication date: 28 February 2023

Dennis Albert, Lukas Daniel Domenig, Philipp Schachinger, Klaus Roppert and Herwig Renner

The purpose of this paper is to investigate the applicability of a direct current (DC) hysteresis measurement on power transformer terminals for the subsequent hysteresis model…

Abstract

Purpose

The purpose of this paper is to investigate the applicability of a direct current (DC) hysteresis measurement on power transformer terminals for the subsequent hysteresis model parametrization in transformer grey box topology models.

Design/methodology/approach

Two transformer topology models with two different hysteresis models are used together with a DC hysteresis measurement via the power transformer terminals to parameterize the hysteresis models by means of an optimization. The calculated current waveform with the derived model in the transformer no-load condition is compared to the measured no-load current waveforms to validate the model.

Findings

The proposed DC hysteresis measurement via the power transformer terminals is suitable to parametrize two hysteresis models implemented in transformer topology models to calculate the no-load current waveforms.

Originality/value

Different approaches for the measurement and utilization of transformer terminal measurements for the hysteresis model parametrization are discussed in literature. The transformer topology models, derived with the presented approach, are able to reproduce the transformer no-load current waveform with acceptable accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 6 May 2024

Andreas Gschwentner, Manfred Kaltenbacher, Barbara Kaltenbacher and Klaus Roppert

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various…

Abstract

Purpose

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various manufacturing steps, e.g. heat treatment or cutting techniques, the magnetic material properties can strongly vary locally, and the assumption of homogenized global material parameters is no longer feasible. This paper aims to present the general methodology and two different solution strategies for determining the local magnetic material properties using reference and simulation data.

Design/methodology/approach

The general methodology combines methods based on measurement, numerical simulation and solving an inverse problem. Therefore, a sensor-actuator system is used to characterize electrical steel sheets locally. Based on the measurement data and results from the finite element simulation, the inverse problem is solved with two different solution strategies. The first one is a quasi Newton method (QNM) using Broyden's update formula to approximate the Jacobian and the second is an adjoint method. For comparison of both methods regarding convergence and efficiency, an artificial example with a linear material model is considered.

Findings

The QNM and the adjoint method show similar convergence behavior for two different cutting-edge effects. Furthermore, considering a priori information improved the convergence rate. However, no impact on the stability and the remaining error is observed.

Originality/value

The presented methodology enables a fast and simple determination of the local magnetic material properties of electrical steel sheets without the need for a large number of samples or special preparation procedures.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 25 July 2019

Klaus Roppert, Florian Toth and Manfred Kaltenbacher

The purpose of this paper is to examine a solution strategy for coupled nonlinear magnetic-thermal problems and apply it to the heating process of a thin moving steel sheet…

1024

Abstract

Purpose

The purpose of this paper is to examine a solution strategy for coupled nonlinear magnetic-thermal problems and apply it to the heating process of a thin moving steel sheet. Performing efficient numerical simulations of induction heating processes becomes ever more important because of faster production development cycles, where the quasi steady-state solution of the problem plays a pivotal role.

Design/methodology/approach

To avoid time-consuming transient simulations, the eddy current problem is transformed into frequency domain and a harmonic balancing scheme is used to take into account the nonlinear BH-curve. The thermal problem is solved in steady-state domain, which is carried out by including a convective term to model the stationary heat transport due to the sheet velocity.

Findings

The presented solution strategy is compared to a classical nonlinear transient reference solution of the eddy current problem and shows good convergence, even for a small number of considered harmonics.

Originality/value

Numerical simulations of induction heating processes are necessary to fully understand certain phenomena, e.g. local overheating of areas in thin structures. With the presented approach it is possible to perform large 3D simulations without excessive computational resources by exploiting certain properties of the multiharmonic solution of the eddy current problem. Together with the use of nonconforming interfaces, the overall computational complexity of the problem can be decreased significantly.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3