Search results

1 – 10 of 221
Article
Publication date: 6 May 2024

Hansu Kim, Luke Crispo, Nicholas Galley, Si Mo Yeon, Yong Son and Il Yong Kim

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight…

Abstract

Purpose

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight topology-optimized designs with improved performance, but limited build volume restricts the printing of large components. The purpose of this paper is to design a lightweight aircraft seat leg structure using topology optimization (TO) and MAM with build volume restrictions, while satisfying structural airworthiness certification requirements.

Design/methodology/approach

TO was used to determine a lightweight conceptual design for the seat leg structure. The conceptual design was decomposed to meet the machine build volume, a detailed CAD assembly was designed and print orientation was selected for each component. Static and dynamic verification was performed, the design was updated to meet the structural requirements and a prototype was manufactured.

Findings

The final topology-optimized seat leg structure was decomposed into three parts, yielding a 57% reduction in the number of parts compared to a reference design. In addition, the design achieved an 8.5% mass reduction while satisfying structural requirements for airworthiness certification.

Originality/value

To the best of the authors’ knowledge, this study is the first paper to design an aircraft seat leg structure manufactured with MAM using a rigorous TO approach. The resultant design reduces mass and part count compared to a reference design and is verified with respect to real-world aircraft certification requirements.

Article
Publication date: 12 July 2021

Matt Schmitt and Il Yong Kim

In furthering numerical optimization techniques for the light-weighting of components, it is paramount to produce algorithms that closely mimic the physical behavior of the…

Abstract

Purpose

In furthering numerical optimization techniques for the light-weighting of components, it is paramount to produce algorithms that closely mimic the physical behavior of the specific manufacturing method under which they are created. The continual development in topology optimization (TO) has reduced the difference in the optimized geometry from what can be physically realized. As the reinterpretation stage inevitably deviates from the optimal geometry, each progression in the optimization code that renders the final solution more realistic is beneficial. Despite the efficacy of material extrusion (MEx) in producing complex geometries, select manufacturing constraints are still required. Thus, the purpose of this paper is to develop a TO code which demonstrates the incorporation of MEx specific manufacturing constraints into a numerical optimization algorithm.

Design/methodology/approach

A support index is derived for each element of the finite element mesh that is used to penalize elements, which are insufficiently supported, discouraging their existence. The support index captures the self-supporting angle and maximum allowable bridging distance for a given MEx component. The incorporation of the support index into a TO code is used to demonstrate the efficacy of the method on multiple academic examples.

Findings

The case studies presented demonstrate the methodology is successful in generating a resulting topology that is self-supporting given the manufacturing parameters specified in the code. Comparative to a general TO problem formulation, the optimal material distribution results in a minimally penalized design on a compliance normalization metric while fully adhering to the MEx specific parameters. The methodology, thus, proves useful in generating an infill geometry is fully enclosed regions, where support material extraction is not a possibility.

Originality/value

The work presented is the first paper to produce a novel methodology that incorporates the manufacturing-specific constraint of bridging distance for MEx into TO code. The results generated allow for the creation of printed components with hollow inclusions that do not require any additional support material beyond the intended structure. Given the advancement, the numerical optimization technique has progressed to a more realistic representation of the physical manufacturing method.

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 December 2023

Noah Ray and Il Yong Kim

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the…

Abstract

Purpose

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components.

Design/methodology/approach

This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation.

Findings

Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design.

Originality/value

Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.

Article
Publication date: 20 April 2022

Vishrut Shah, Manish Pamwar, Balbir Sangha and Il Yong Kim

The purpose of this paper is to propose an effective and efficient numerical method that can consider natural frequency in multi-material topology optimization (MMTO) and which is…

Abstract

Purpose

The purpose of this paper is to propose an effective and efficient numerical method that can consider natural frequency in multi-material topology optimization (MMTO) and which is scalable for complex three-dimensional (3D) problems.

Design/methodology/approach

The optimization algorithm is developed by combining custom FORTRAN code for MMTO with the open-source software Mystran, which is used as a finite element analysis (FEA) solver. The proposed algorithm allows the designer to shift the fundamental frequency of the design beyond a defined frequency spectrum from the initial designing phase. The methodology is formulated in a smooth and differentiable manner, with the sensitivity expressions, required by gradient-based optimization solvers, presented.

Findings

Natural frequency constraint has been successfully implemented into MMTO. The use of open-source software Mystran as an FEA solver in the algorithm provides ability to solve complex problems. Mystran offers powerful built-in functions for eigenvalue extraction using methods like Givens, modified Givens, inverse power and the Lanczos method, which provide the ability to solve complex models. The algorithm is successfully able to solve both two- and three-material MMTO jobs for two-dimensional and 3D geometries.

Originality/value

Natural frequency constraint consideration into topology optimization is very challenging due to three common issues: localized eigenmodes, mode switching and high computational cost. The proposed algorithm addresses these inherent issues, implements natural frequency constraint to MMTO and solves for complex models, which is hardly possible using conventional methods.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 August 2019

Matt Schmitt, Raj Mattias Mehta and Il Yong Kim

Lightweighting of components in the automotive industry is a prevailing trend influenced by both consumer demand and government regulations. As the viability of additively…

1146

Abstract

Purpose

Lightweighting of components in the automotive industry is a prevailing trend influenced by both consumer demand and government regulations. As the viability of additively manufactured designs continues to increase, traditionally manufactured components are continually being replaced with 3D-printed parts. The purpose of this paper is to present experimental results and design considerations for 3D-printed acrylonitrile butadiene styrene (ABS) components with non-solid infill sections, addressing a large gap in the literature. Information published in this paper will guide engineers when designing fused deposition modeling (FDM) ABS parts with infill regions.

Design/methodology/approach

Uniaxial tensile tests and three-point bend tests were performed on 12 different build configurations of 20 samples. FDM with ABS was used as the manufacturing method for the samples. Failure strength and elastic modulus were normalized on print time and specimen mass to quantify variance between configurations. Optimal infill configurations were selected and used in two automotive case study examples.

Findings

Results obtained from the uniaxial tensile tests and three-point bend tests distinctly showed that component strength is highly influenced by the infill choice selected. Normalized results indicate that solid, double dense and triangular infill, all with eight contour layers, are optimal configurations for component regions experiencing high stress, moderate stress and low stress, respectively. Implementation of the optimal infill configurations in automotive examples yielded equivalent failure strength without normalization and significantly improved failure strength on a print time and mass normalized index.

Originality/value

To the best of the authors’ knowledge, this is the first paper to experimentally determine and quantify optimal infill configurations for FDM ABS printed parts. Published data in this paper are also of value to engineers requiring quantitative material properties for common infill configurations.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 15 October 2008

Gerhard Kümmel

Analysts of armed conflict and war have noted a considerable shift in the way wars are conducted in the present. These analyses share the observations that present-day warfare…

Abstract

Analysts of armed conflict and war have noted a considerable shift in the way wars are conducted in the present. These analyses share the observations that present-day warfare includes more and more non-state actors as warring parties. Terrorist groups are also part of the (post-)modern picture of violent conflict. Within the past decade, they have increasingly relied on the instrument of suicide terrorism. Suicide attacks are an irritating phenomenon as they seem inherently irrational. The paper examines the spread of the suicide attacks in different parts of the world and identifies cross-case structures, contexts, and mechanisms that propel the use of suicide bombers.

Details

Armed Forces and Conflict Resolution: Sociological Perspectives
Type: Book
ISBN: 978-1-8485-5122-0

Open Access
Article
Publication date: 31 August 2014

Seong-Gyu Jeon and Yong Jin Kim

The weapon system of The Navy is the small quantity producing system on multiple kinds. It is consisted of various equipment and the subordinate parts of those which can repair…

Abstract

The weapon system of The Navy is the small quantity producing system on multiple kinds. It is consisted of various equipment and the subordinate parts of those which can repair the damaged part. The operating procedure concerning warship's repair parts managed under these systems is as follows. Firstly, if demand of repair parts occurs from warship which is the operating unit of weapon, then the Fleet(the repair & supply support battalion) is in charge of dealing with these requests. If certain request from warship is beyond the battalion's capability, it is delivered directly to the Logistic Command. In short, the repair and supply support system of repair parts can be described as the multi-level support system. The various theoretical researches on inventory management of Navy's repair parts and simulation study that reflects reality in detail have been carried out simultaneously. However, the majority of existing research has been conducted on aircraft and tank's repairable items, in that, the studies is woefully deficient in the area concerning Navy's inventory management. For that reason, this paper firstly constructs the model of consumable items that is frequently damaged reflecting characteristics of navy's repair parts inventory management using ARENA simulation. After that, this paper is trying to propose methodology to analyze optimal inventory level of each supply unit through OptQuest, the optimization program of ARENA simulation.

Details

Journal of International Logistics and Trade, vol. 12 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

Expert briefing
Publication date: 17 May 2016

Developments in North Korean politics and foreign policy following the Party Congress.

Details

DOI: 10.1108/OXAN-DB211124

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 19 November 2007

Yong H. Kim Ph., Jong C. Rhim and Daniel L. Friesner

This paper examines the interrelationships among debt policy, dividend policy, and ownership structure using a simultaneous equation framework. Our approach allows us to test both…

1200

Abstract

This paper examines the interrelationships among debt policy, dividend policy, and ownership structure using a simultaneous equation framework. Our approach allows us to test both the convergence of interests theory and entrenchment theory. Using a sample of publicly traded South Korean manufacturing firms, we find that debt policy and ownership structure have a positive impact on dividend policy. We also find that both debt and dividend policy are positively related to ownership structure. Our findings support both the theory of convergence of interests between management and ownership and entrenchment theory, and also explain why many studies have found conflicting results.

Details

Multinational Business Review, vol. 15 no. 3
Type: Research Article
ISSN: 1525-383X

Keywords

Expert briefing
Publication date: 16 November 2015

North Korean politics.

Details

DOI: 10.1108/OXAN-DB206693

ISSN: 2633-304X

Keywords

Geographic
Topical
1 – 10 of 221