Search results

1 – 3 of 3
Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7–11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-N’-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 September 2021

Hoda Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

In continuation to the previous work on copper (lignin/silica/fatty acids) (Cu-LSF) complex as a natural antioxidant/electrical conductivity agent for nitrile-butadiene rubber…

Abstract

Purpose

In continuation to the previous work on copper (lignin/silica/fatty acids) (Cu-LSF) complex as a natural antioxidant/electrical conductivity agent for nitrile-butadiene rubber (NBR), this study aims to perform further investigations for NBR vulcanizates loaded with different concentrations of Cu-LSF complex, including swelling behavior and hardness properties, as well as evaluating their thermal stability via thermogravimetric analysis.

Design/methodology/approach

The behavior of Cu-LSF complex in NBR matrix was compared with that of the standard commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline/N-isopropyl-N′-phenyl-p-phenylenediamine [TMQ/IPPD]).

Findings

Results revealed that Cu-LSF complex can act as an effective reinforcing and hardening agent, with exhibiting fluid resistance, even when compared with the commercial antioxidants. In comparison with the previous studies on its Zn and Ca analogues and their behavior in different rubber matrixes, Cu-LSF complex showed higher values of hardness and less susceptibility for swelling, respectively. Moreover, Cu-LSF antioxidant activity becomes in accordance with the previous work.

Originality/value

The new Cu-LSF complex could be used as a green alternative to the commercial antioxidants (TMQ/IPPD) with introducing further advantages to the rubber matrix, such as hardening, fluid resistance and thermal stability.

Details

Pigment & Resin Technology, vol. 51 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 April 2021

Hoda Sabry Othman, Maher A. El-Hashash, S.H. El-Sabbagh, A.A. Ward and Galal A.M. Nawwar

Calcium and Zinc lignates were proven to be good antioxidants for rubber composites. The purpose of this paper is to evaluate the copper lignate antioxidant activity along with…

Abstract

Purpose

Calcium and Zinc lignates were proven to be good antioxidants for rubber composites. The purpose of this paper is to evaluate the copper lignate antioxidant activity along with evaluating its electrical conductivity in rubber composites.

Design/methodology/approach

The antioxidant activity of the Cu-LSF complex was compared with that of standard commercial antioxidant additives as a green alternative. The rheological characteristics, thermal aging and mechanical and electrical properties were evaluated for the NBR vulcanizates containing the different antioxidants in the presence or absence of coupling agents.

Findings

Results revealed that the Cu-LSF complex (5 phr) can function as a compatibilizing, antioxidant and electrical conductivity agent.

Originality/value

The new copper complex prepared from paper-pulping black liquor of wastes could be used as a green antioxidant and electrical conductivity agent in rubber composites.

1 – 3 of 3