Search results

1 – 2 of 2
Article
Publication date: 10 April 2024

Yanhu Han, Haoyuan Du and Chongyang Zhao

Digital transformation is crucial for achieving high-quality development in the construction industry. Assessing the industry's digital maturity is an urgent necessity. The…

Abstract

Purpose

Digital transformation is crucial for achieving high-quality development in the construction industry. Assessing the industry's digital maturity is an urgent necessity. The Digital Transformation Maturity Model is a potential tool to systematically evaluate the digital maturity levels of various industries. However, most existing models predominantly focus on sectors such as the Internet and manufacturing, leaving the construction industry comparatively underrepresented. This study aims to address this gap by developing a maturity model tailored specifically for digital transformation within the construction industry.

Design/methodology/approach

This study leverages the Capability Maturity Theory and integrates the unique characteristics of the construction industry to construct a comprehensive maturity model for digital transformation. The model comprises five critical dimensions: industry environment, strategy and organization, digital infrastructure, business process and management digitization, and digital performance. These dimensions encompass a total of 25 assessment indexes. To validate the model's feasibility and effectiveness, a digital transformation maturity assessment was conducted within China's construction industry.

Findings

The results of the maturity assessment within the Chinese construction industry reveal that it currently operates at the third level of digital maturity (defined level). The industry's maturity score stands at 2.329 out of 5. This outcome indicates that the developed model is accurate and reliable in assessing the level of digital transformation maturity within the construction industry.

Originality/value

This paper contributes both practical and theoretical insights to the field of digital transformation within the construction industry. By creating a tailored maturity model, it addresses a significant gap in existing research and offers a valuable tool for assessing and advancing digital maturity levels within this industry.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 December 2023

Zhenyu Ma, Yupeng Zhang, Xuguang An, Jing Zhang, Qingquan Kong, Hui Wang, Weitang Yao and Qingyuan Wang

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial…

Abstract

Purpose

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial reference basis for the development of high-performance carbide reinforced FeCrAl alloys with good mechanical and corrosion properties in the future.

Design/methodology/approach

Nano ZrC reinforced FeCrAl alloys were prepared by mechanical alloying and spark plasma sintering. Phases composition, tensile fractography, corrosion morphology and chemical composition of nano ZrC reinforced FeCrAl alloys were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. Microhardness and tensile properties of nano ZrC reinforced FeCrAl alloys were investigated by mechanical testing machine and Vickers hardness tester. Electrochemical corrosion properties of nano ZrC reinforced FeCrAl alloys were investigated by electrochemical workstation in 3.5 wt.% NaCl solution.

Findings

The results showed that addition of nano ZrC can effectively improve the mechanical and corrosion properties. However, excessive nano ZrC could decrease the mechanical properties and reduce the corrosion resistance. In all the FeCrAl alloys, FeCrAl–0.6 wt.% ZrC alloy exhibits the optimum mechanical properties with an ultimate tensile strength, elongation and hardness of 990.7 MPa, 24.1% and 335.8 HV1, respectively, and FeCrAl–0.2 wt.% ZrC alloy has a lower corrosion potential (−0.179 V) and corrosion current density (2.099 µA/cm2) and larger pitting potential (0.497 V) than other FeCrAl–ZrC alloys, showing a better corrosion resistance.

Originality/value

Adding proper nano ZrC particles can effectively improve the mechanical and corrosion properties, while the excessive nano ZrC is harmful to the mechanical and corrosion properties of FeCrAl alloys, which provides an instruction to develop high-performance FeCrAl cladding materials.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 2 of 2