Search results

1 – 2 of 2
Article
Publication date: 18 January 2024

Shiba Hessami, Hamed Davari-Ardakani, Youness Javid and Mariam Ameli

This study aims to deal with the multi-mode resource-constrained project scheduling problem (MRCPSP) with the ability to transport resources among multiple sites, aiming to…

Abstract

Purpose

This study aims to deal with the multi-mode resource-constrained project scheduling problem (MRCPSP) with the ability to transport resources among multiple sites, aiming to minimize the total completion time and the total cost of the project simultaneously.

Design/methodology/approach

To deal with the problem under consideration, a bi-objective optimization model is developed. All activities are interconnected by finish-start precedence relations, and pre-emption is not allowed. Then, the ɛ-constraint optimization method is used to solve 24 different-sized instances, ranging from 5 to 120 activities, and report the makespan, total cost and CPU time. A set of Pareto-optimal solutions are determined for some instances, and sensitivity analyses are performed to find the impact of changing parameters on objective values.

Findings

Results highlight the importance of resource transportability assumption on project completion time and cost, providing useful insights for decision makers and practitioners.

Originality/value

A novel bi-objective optimization model is proposed to deal with the multi-site MRCPSP, considering both the cost and time of resource transportation between multiple sites. To the best of the authors’ knowledge, none of the studies in the project scheduling area has yet addressed this problem.

Article
Publication date: 11 October 2019

Hassan Heidari-Fathian and Hamed Davari-Ardakani

This study aims to deal with a project portfolio selection problem aiming to maximize the net present value of the project portfolio and minimize the resource usage variation…

Abstract

Purpose

This study aims to deal with a project portfolio selection problem aiming to maximize the net present value of the project portfolio and minimize the resource usage variation between successive time periods.

Design/methodology/approach

A bi-objective mixed integer programming model is presented under resource constraints. The parameters related to outlays and net cash flows of existing and new projects are considered to be uncertain. An augmented ε-constraint (AUGMECON) method is used to solve the proposed model, and a fuzzy approach is used to find the most preferred Pareto-optimal solutions among those generated by AUGMECON method. The effectiveness of the proposed solution method is compared with three other multi-objective optimization methods. Finally, some sensitivity analyses are performed to assess the effect of changing a number of parameters on the values of objective functions.

Findings

The proposed approach helps corporations make optimal decisions for rebalancing their project portfolio, through launching some new candidate projects and upgrading some of the existing projects.

Originality/value

A novel bi-objective optimization model is proposed for designing a project portfolio problem under budget constraints and profit risk controls. Two types of projects including existing and new projects are considered in the problem. Minimization of resource usage variation between successive periods is considered in the model as one objective function. An AUGMECON method is used to solve the proposed bi-objective mathematical model. A fuzzy approach is applied to find the best Pareto-optimal solutions of AUGMECON method. Results of the proposed solution approach are compared with three other multi-objective decision-making methods in different numerical examples.

1 – 2 of 2