Search results

1 – 10 of 23
Article
Publication date: 13 June 2023

M. Hassanein, M. Abd El Rahm, H. M. Abd El Bary and H. Abd El-Wahab

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Abstract

Purpose

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Design/methodology/approach

Different dispersing agents through the reaction of glycerol monooleate and toluene diisocyanate were prepared and then performed by using three different polyols (succinic anhydride-modified polyethylene glycol PEG 600, EO/PO Polyether Monoamine and p-chloro aniline Polyether Monoamine), to obtain three different dispersing agents for water-based titanium dioxide inkjet inks. The prepared dispersants were characterized using FTIR to monitor the reaction progress. Then the prepared dispersants were formulated in titanium dioxide inkjet inks formulation and characterized by particle size, dynamic surface tension, transmission electron microscopy, viscosity and zeta potential against commercial dispersants. Also, the study was extended to evaluate the printed polyester by using the prepared inks according to washing and crock fastness.

Findings

The obtained results showed that p-chloro aniline Polyether Monoamine (J) and succinic anhydride modified polyethylene glycol PEG 600 (H) dispersants provided optimum performance as compared to commercial standards especially, particle size distribution data while EO/PO Polyether Monoamine based on dispersant was against and then failed with the wettability and dispersion stability tests.

Practical implications

These ink formulations could be used for printing on cotton fabric by DTG technique of printing and can be used for other types of fabrics.

Originality/value

The newly prepared ink formulation for digital textile printing based on synthesized polyurethane prepolymers has the potential to be promising in this type of printing inks, to prevent clogging of nozzles on the printhead and to improve the print quality on the textile fiber.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 July 2020

Magdy A. Ezzat

In the present paper, the new concept of “memory dependent derivative” in the Pennes’ bioheat transfer and heat-induced mechanical response in human living tissue with variable…

Abstract

Purpose

In the present paper, the new concept of “memory dependent derivative” in the Pennes’ bioheat transfer and heat-induced mechanical response in human living tissue with variable thermal conductivity and rheological properties of the volume is considered.

Design/methodology/approach

A problem of cancerous layered with arbitrary thickness is considered and solved analytically by Kirchhoff and Laplace transformation. The analytical expressions for temperature, displacement and stress are obtained in the Laplace transform domain. The inversion technique for Laplace transforms is carried out using a numerical technique based on Fourier series expansions.

Findings

Comparisons are made with the results anticipated through the coupled and generalized theories. The influence of variable thermal, volume materials properties and time-delay parameters for all the regarded fields for different forms of kernel functions is examined.

Originality/value

The results indicate that the thermal conductivity and volume relaxation parameters and MDD parameter play a major role in all considered distributions. This dissertation is an attempt to provide a theoretical thermo-viscoelastic structure to help researchers understand the complex thermo-mechanical processes present in thermal therapies.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 December 2019

Siddhartha Biswas

The purpose of this paper is to deal with a new generalized model of thermoelasticity theory with memory-dependent derivatives (MDD).

Abstract

Purpose

The purpose of this paper is to deal with a new generalized model of thermoelasticity theory with memory-dependent derivatives (MDD).

Design/methodology/approach

The two-dimensional equations of generalized thermoelasticity with MDD are solved using a state-space approach. The numerical inversion method is employed for the inversion of Laplace and Fourier transforms.

Findings

The solutions are presented graphically for different values of time delay and kernel function.

Originality/value

The governing coupled equations of the new generalized thermoelasticity with time delay and kernel function, which can be chosen freely according to the necessity of applications, are applied to a two-dimensional problem of an isotropic plate.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 1989

Magda El‐Sherbini

The conflict between Iran and Iraq is not new; it dates from long before September 1980. In fact, the origins of the current war can be traced to the battle of Qadisiyah in…

Abstract

The conflict between Iran and Iraq is not new; it dates from long before September 1980. In fact, the origins of the current war can be traced to the battle of Qadisiyah in Southern Iraq in 637 A.D., a battle in which the Arab armies of General Sa'd ibn Abi Waqqas decisively defeated the Persian army. In victory, the Arab armies extended Islam east of the Zagros Mountains to Iran. In defeat, the Persian Empire began a steady decline that lasted until the sixteenth century. However, since the beginning of that century, Persia has occupied Iraq three times: 1508–1514, 1529–1543, and 1623–1638. Boundary disputes, specifically over the Shatt al‐Arab Waterway, and old enmities caused the wars. In 1735, belligerent Iranian naval forces entered the Shatt al‐Arab but subsequently withdrew. Twenty years later, Iranians occupied the city of Sulimaniah and threatened to occupy the neighboring countries of Bahrain and Kuwait. In 1847, Iran dominated the eastern bank of the Shatt al‐Arab and occupied Mohamarah in Iraq.

Details

Reference Services Review, vol. 17 no. 2
Type: Research Article
ISSN: 0090-7324

Article
Publication date: 26 April 2022

Magdy A. Ezzat, Shereen M. Ezzat and Modhi Y. Alkharraz

The purpose of this study is to develop a comprehensive size-dependent piezoelectric thermo-viscoelastic coupling model that accounts for two fundamentally distinct size-dependent…

152

Abstract

Purpose

The purpose of this study is to develop a comprehensive size-dependent piezoelectric thermo-viscoelastic coupling model that accounts for two fundamentally distinct size-dependent models that govern fractional dual-phase lag heat transfer and viscoelastic deformation, respectively.

Design/methodology/approach

The fractional calculus has recently been shown to capture precisely the experimental effects of viscoelastic materials. The governing equations are combined into a unified system, from which certain theorems results on linear coupled and generalized theories of thermo-viscoelasticity may be easily established. Laplace transforms and state–space approach will be used to determine the generic solution when any set of boundary conditions exists. The derived formulation is used to two concrete different problems for a piezoelectric rod. The numerical technique for inverting the transfer functions is used to generate observable numerical results.

Findings

Some analogies of impacts of nonlocal thermal conduction, nonlocal elasticity and DPL parameters as well as fractional order on thermal spreads and thermo-viscoelastic response are illustrated in the figures.

Originality/value

The results in all figures indicate that the nonlocal thermal and viscoelastic parameters have a considerable influence on all field values. This discovery might help with the design and analysis of thermal-mechanical aspects of nanoscale devices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 December 2020

Rajesh Kumar, Seema Thakran, Ankush Gunghas and Kapil Kumar Kalkal

The purpose of this study is to analyze the two-dimensional disturbances in a nonlocal, functionally graded, isotropic thermoelastic medium under the purview of the Green–Lindsay…

Abstract

Purpose

The purpose of this study is to analyze the two-dimensional disturbances in a nonlocal, functionally graded, isotropic thermoelastic medium under the purview of the Green–Lindsay model of generalized thermoelasticity. The formulation is subjected to a mechanical load. All the thermomechanical properties of the solid are assumed to vary exponentially with the position.

Design/methodology/approach

Normal mode technique is proposed to obtain the exact expressions for the displacement components, stresses and temperature field.

Findings

Numerical computations have been carried out with the help of MATLAB software and the results are illustrated graphically. These are also calculated numerically for a magnesium crystal-like material and illustrated through graphs. Theoretical and numerical results demonstrate that the nonlocality and nonhomogeneity parameters have significant effects on the considered physical fields.

Originality/value

Influences of nonlocality and nonhomogeneity on the physical quantities are carefully analyzed for isothermal and insulated boundaries. The present work is useful and valuable for analysis of problems involving mechanical shock, nonlocal parameter, functionally graded materials and elastic deformation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 July 2023

Chenghui Xu, Sen Leng, Deen Li and Yajun Yu

This paper aims to focus on the accurate analysis of the fractional heat transfer in a two-dimensional (2D) rectangular monolayer tissue with three different kinds of lateral…

Abstract

Purpose

This paper aims to focus on the accurate analysis of the fractional heat transfer in a two-dimensional (2D) rectangular monolayer tissue with three different kinds of lateral boundary conditions and the quantitative evaluation of the degree of thermal damage and burn depth.

Design/methodology/approach

A symplectic method is used to analytically solve the fractional heat transfer dual equation in the frequency domain (s-domain). Explicit expressions of the dual vector can be constructed by superposing the symplectic eigensolutions. The solution procedure is rigorously rational without any trial functions. And the accurate predictions of temperature and heat flux in the time domain (t-domain) are derived through numerical inverse Laplace transform.

Findings

Comparison study shows that the maximum relative error is less than 0.16%, which verifies the accuracy and effectiveness of the proposed method. The results indicate that the model and heat source parameters have a significant effect on temperature and thermal damage. The pulse duration (Δt) of the laser heat source can effectively control the time to reach the peak temperature and the peak slope of the thermal damage curve. The burn depth is closely correlated with exposure temperature and duration. And there exists the delayed effect of fractional order on burn depth.

Originality/value

A symplectic approach is presented for the thermal analysis of 2D fractional heat transfer. A unified time-fractional heat transfer model is proposed to describe the anomalous thermal behavior of biological tissue. New findings might provide guidance for temperature prediction and thermal damage assessment of biological tissues during hyperthermia.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 22 January 2021

Zeinab Abbas Zaazou and Doaa Salman Abdou

The impact of COVID-19 outbreak freeze economic actors and hold innovative startups. This triggered the researchers to investigate the effect of the pandemic on small- and…

14495

Abstract

Purpose

The impact of COVID-19 outbreak freeze economic actors and hold innovative startups. This triggered the researchers to investigate the effect of the pandemic on small- and medium-sized enterprises (SMEs) in Egypt and how do these start-ups deal on the whole with this serious situation.

Design/methodology/approach

The research in hand used both qualitative and quantitative methods. It started first with semi-structured interview questions addressed to a number of participants, then a quantitative study took place, ending with conclusion and recommendations.

Findings

There is an agreement among all participants that entrepreneurs should always be flexible and seek for investments in innovation. However, there is a discrepancy among participants’ opinions regarding the measurements taken by the Egyptian Government post the pandemic outbreak.

Research limitations/implications

The field study results and the exploratory research results would have come out more accurate if it was not confined only to geographical limitation (Cairo Governorate).

Practical implications

The research in hand suggests that practical measurements should not only provide first aid to start-ups by alleviating the pressure caused by constrained cash flow but also consider long-term measures embedded in and supported by the wider entrepreneurial ecosystem to ensure start-ups rapid recovery and growth.

Social implications

SMEs attribute to social and economic change and have an impact on the local public and social services sector as a result of the business’s activities.

Originality/value

This study first illustrates the challenges entrepreneurs are facing because of the pandemic, then it presents how entrepreneurs are dealing with the effects of the crisis.

Details

Journal of Humanities and Applied Social Sciences, vol. 4 no. 2
Type: Research Article
ISSN:

Keywords

Article
Publication date: 21 June 2018

Aatef Hobiny and Ibrahim Abbas

The purpose of this paper is to study the wave propagation in a non-homogenous semiconducting medium through the photothermal process using the fractional order…

Abstract

Purpose

The purpose of this paper is to study the wave propagation in a non-homogenous semiconducting medium through the photothermal process using the fractional order photo-thermoelastic without neglecting the coupling between the plasma and thermoelastic waves that photogenerated through traction free and loaded thermally by exponentially decaying pulse boundary heat flux.

Design/methodology/approach

The analytical solutions in the transformed domain by the eigenvalue approach were observed through the transform techniques of Laplace.

Findings

Silicon-like semiconductor was used to achieve the numerical computations.

Originality/value

Some comparisons are shown in the figures to estimate the effects of the fractional order and non-homogeneous parameters.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 April 2020

Ashraf M. Zenkour

The thermo-diffusion analysis of an isotropic cylinder under thermal flux and chemical potential impacts has been discussed. Improvements of Green and Naghdi generalized…

77

Abstract

Purpose

The thermo-diffusion analysis of an isotropic cylinder under thermal flux and chemical potential impacts has been discussed. Improvements of Green and Naghdi generalized thermoelasticity theory have been proposed.

Design/methodology/approach

Some models with and without energy dissipation have been presented as well as the simple forms of Green–Naghdi (G–N) theories. These novel multi- and single-/dual-phase-lag models are presented to investigate the thermo-diffusion of the solid cylinder. The closed-form solution of thermo-diffusion governing equations of solid cylinder has been obtained to deduce all field variables.

Findings

A comparison study between the simple G–N II and III models and their improved models has been presented. The validations of outcomes are acceptable and so benchmarks are reported to help other investigators in their future comparisons.

Originality/value

The modified Green and Naghdi theories of types II and III are presented to get novel and accurate models of single- and dual-phase-lag of multiterms. The heat of mass diffusion equation as well as the constitutive equations for the stresses and chemical potential of a solid cylinder is added to the present formulation. The system of three differential coupled equations is solved, and all field variables are obtained for the thermal diffusion of the solid cylinder. Some validation examples and applications are presented to compare the simple and modified Green and Naghdi theories of types II and III. Sample plots are illustrated along the radial direction of the solid cylinder. Some results are tabulated to serve as benchmark results for future comparisons with other investigators. The reported and illustrated results show that the simple G–N II and III models yield the largest values of all field quantities. The single-phase-lag models give the smallest values. However, the dual-phase-lag model yields results that are intermediate between those of the simple and single-phase-lag G–N models.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 23