Search results

1 – 3 of 3
Article
Publication date: 22 April 2024

Ghada Karaki, Rami A. Hawileh and M.Z. Naser

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete…

Abstract

Purpose

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete (RC) walls.

Design/methodology/approach

The study performs an one-at-a-time (OAT) sensitivity analysis to assess the impact of variables defining the constitutive and parametric fire models on the wall's thermal response. Moreover, it extends the sensitivity analysis to a variance-based analysis to assess the effect of constitutive model type, fire model type and constitutive model uncertainty on the RC wall's thermal response variance. The study determines the wall’s thermal behaviour reliability considering the different constitutive models and their uncertainty.

Findings

It is found that the impact of the variability in concrete’s conductivity is determined by its temperature-dependent model, which differs for NSC and HSC. Therefore, more testing and improving material modelling are needed. Furthermore, the heating rate of the fire scenario is the dominant factor in deciding fire-resistance performance because it is a causal factor for spalling in HSC walls. And finally the reliability of wall's performance decreased sharply for HSC walls due to the expected spalling of the concrete and loss of cross-section integrity.

Originality/value

Limited studies in the current open literature quantified the impact of constitutive models on the behaviour of RC walls. No studies have examined the effect of material models' uncertainty on wall’s response reliability under fire. Furthermore, the study's results contribute to the ongoing attempts to shape performance-based structural fire engineering.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 November 2023

Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla and M.Z. Naser

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Abstract

Purpose

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Design/methodology/approach

A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire.

Findings

The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios.

Originality/value

There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 1 June 2021

Ibrahim M. Awad, Ghada K. Al-Jerashi and Zaid Ahmad Alabaddi

This empirical paper aims to examine the impact of interest rate (IR) and political instability (POLINS) on Palestine's domestic private investment.

2252

Abstract

Purpose

This empirical paper aims to examine the impact of interest rate (IR) and political instability (POLINS) on Palestine's domestic private investment.

Design/methodology/approach

A set of econometric techniques of time series data are adopted to meet the study objectives. They include regression analysis, unit root tests, cointegration test, ARDL & Bound tests, VAR test and Granger causality test.

Findings

The study's primary results complement the neoclassical approach, which states that the IR is negatively associated with domestic private investment. The empirical results reveal that there is no long-run relationship. Also, there is no causality between domestic investment and lending rates. Accordingly, these findings alert policymakers to draw a series of steps to minimize the IR at a minimum to stimulate investment for improved economic growth and development.

Practical implications

There is still no national currency in Palestine. The Palestinian Monetary Authority (PMA) is advised to set an appropriate ratio of the IR for the currencies-in-circulation in Palestine for boosting investment and economic development.

Originality/value

This paper provides new background information to both policymakers and researchers on the main determinants of investment in Palestine using econometric analysis. Accordingly, this critical issue is required to be examined in Palestine for stimulating investment.

Details

Journal of Business and Socio-economic Development, vol. 1 no. 1
Type: Research Article
ISSN: 2635-1374

Keywords

1 – 3 of 3