Search results

1 – 2 of 2
Article
Publication date: 1 July 2022

Javad Babakhani and Farzad Veysi

The purpose of this article is to investigate the variables affecting heat transfer from the surfaces of a tall building and also the extent of the impact of each of them. Another…

Abstract

Purpose

The purpose of this article is to investigate the variables affecting heat transfer from the surfaces of a tall building and also the extent of the impact of each of them. Another purpose of this paper is to provide a suitable model for estimating the heat transfer coefficient of the external surfaces of the building according to the impact of variables.

Design/methodology/approach

In this study, the Taguchi's approach in the design of the experiments was used to reduce the number of experiments. Percent contributions factors into the overall and surface-averaged Nu of a square prism were obtained by the (ANOVA). The change in Nu by changing either of T, P, angle of attack and V were investigated by the (ANOM). The most significant factors affecting the value Nu were also identified to facilitate the design of thermal systems by eliminating the factors imposing no significant effect on the response in the molding phase. The set of conditions under which the air properties remained unchanged was identified. Five correlations were formulated to predict Nu.

Findings

Models used in BES, in which the effects of T, P, A and geometrical effects are not accounted for, are not reliable. The air pressure was found to impose no significant effect on the overall Nu of the considered square prism. Studied in the range of 274–303 K, the air temperature imposed a significant effect on the overall Nu. The results of ANOVA show the significant role of Re to predict Nu of tall buildings.

Originality/value

This article is taken from a doctoral dissertation.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 May 2019

Shoaib Khanmohammadi, Mohammad Zanjani and Farzad Veysi

Present research focus on using solar energy as a renewable option for office buildings in different climatic conditions in Iran. To seeking a way to use clean solar energy and…

Abstract

Purpose

Present research focus on using solar energy as a renewable option for office buildings in different climatic conditions in Iran. To seeking a way to use clean solar energy and reduce current expense in buildings an investigation carried out. Nine office buildings in various climatic regions selected as case studies. Through a precise examination, buildings specifications, energy demand and climate information carried out. In the first step based on the buildings type and hot water demand, solar water heater systems designed for each case. In the second step, a cost-benefit analysis is done to detriment the economic aspects of implement aforementioned type of solar system. A cost-benefit analysis is done from saving energy and return time of investment point of view. Results indicate that solar water heater with low investment about US$500 and payback time between 2 and 5 years can be noticed as a desirable renewable option in case studies. Furthermore, analysis reveals that thermal load of building is more effective on fuel saving in building, while solar radiation intensity has more effective on the payback in solar water heater utilization.

Design/methodology/approach

In this study based on thermal load of nine building office and radiation of different part of Kermnashah province, the possibility of solar water system is investigated.

Findings

Analyses reveal that the thermal load of building is more effective on fuel saving, while solar radiation intensity has more effective on the payback in solar water heater utilization. The main originality goes back to consideration of different meteorological conditions in solar water heater selection.

Details

World Journal of Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2