Search results

1 – 10 of 12
Article
Publication date: 10 July 2017

Dongju Chen, Jihong Han, Chen Huo, Jinwei Fan and Qiang Cheng

This paper aims to better understand the dynamic characteristics of an aerostatic slider caused by a gas film, and the impact of a gas film slip on the load capacity, stiffness…

Abstract

Purpose

This paper aims to better understand the dynamic characteristics of an aerostatic slider caused by a gas film, and the impact of a gas film slip on the load capacity, stiffness and dynamic stiffness of the guideway is studied.

Design/methodology/approach

In theory, the Navier velocity slip model is introduced for fluid continuous flow equation to calculate the flow state in the micro-state; in experimental techniques, the stiffness experiment of the guideway by digital inductance meter is performed under different loadings, which are used to inspect the simulation results.

Findings

The maximum value of bearing stiffness in the condition of considering that the gas slip is larger than that of not considering the gas slip, and the gas film clearance of maximum bearing stiffness in the condition of considering the gas slip is less than that of not considering the gas slip. This is verified by the measurement of the stiffness of the guideway.

Originality/value

This paper mostly studies the influence of the gas slip effects on the performance of the aerostatic guideway, which will make a certain contribution to the guideway stability and the machining precision of the machine tool.

Details

Industrial Lubrication and Tribology, vol. 69 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 October 2019

Dongju Chen, You Zhao, Chunqing Zha and Jingfang Liu

The purpose of this paper is to investigate the effect of fluid–structure interaction in micro-scale on the performance of the hydrostatic spindle and improve the analysis…

Abstract

Purpose

The purpose of this paper is to investigate the effect of fluid–structure interaction in micro-scale on the performance of the hydrostatic spindle and improve the analysis precision of the dynamic performance of hydrostatic spindle.

Design/methodology/approach

Dynamic analysis of hydrostatic spindle before and after fluid–structure interaction is carried out according to stiffness and damping performance of the bearing, which demonstrates that the natural frequency and peak response of the spindle are increased in the micro-scale.

Findings

It is concluded from the simulation and experimental results that there is micro-scale effect in the actual operation of the spindle system and slippage exists in the oil film flow. The error between the modal detection result and the theoretical value is within 10 per cent, which also verifies the correctness of the above conclusions.

Originality/value

This paper analyzes the changes of the bearing performance parameters at macro- and micro-scale, which present the influence of the static and dynamic performance of the spindle in the micro-scale.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 July 2023

Dongju Chen, Yueqiang Sun, You Zhao, Kun Sun and Jinwei Fan

The accuracy of the machining process is significantly impacted by the performance of hydrostatic bearings. This paper aims to analyze the influence of micro-textured on the…

Abstract

Purpose

The accuracy of the machining process is significantly impacted by the performance of hydrostatic bearings. This paper aims to analyze the influence of micro-textured on the performance of the hydrostatic bearing, and the performance of the bearing is improved by designing the arrangement of micro-textured.

Design/methodology/approach

Different designs have been used while creating micro-textured bearings. The finite element models of bearing with smooth and micro-textured were established and solved using the computational fluid dynamics method. The arrangement scheme of the micro-textured was evaluated by comparing the influence of the distribution position and arrangement of the micro-textured on the bearing performance.

Findings

To improve the performance of the bearing, the bearing capacity was significantly increased, and the friction coefficient of the bearing was decreased when the micro-textured was distributed in the form of an obtuse angle arrangement in the maximum pressure area of the bearing. The experimental findings validate the analysis method.

Originality/value

In this paper, the effect of irregularly arranged micro-textured on bearing performance is investigated to improve the bearing capacity and lubrication status.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2022

Dongju Chen, Xuan Zhang, Kun Sun and Jinwei Fan

This paper aims to study the influence degree of three factors affecting the vibration amplitude of aerostatic spindle and optimizes each factor.

Abstract

Purpose

This paper aims to study the influence degree of three factors affecting the vibration amplitude of aerostatic spindle and optimizes each factor.

Design/methodology/approach

The vibration amplitude of the spindle is characterized according to internal structure and operating characteristics of aerostatic spindle. The radial and axial vibration models of aerostatic spindle were established by the spring-damper system. The influence degree of main influencing factors on the spindle vibration amplitude was investigated through correlation analysis.

Findings

The results indicate that the crucial factor is aerostatic spindle speed and experiments validated that increasing spindle speed can enhance spindle stability. The influence of three factors on radial vibration is greater than that on axial vibration. Finally, the values of optimal working parameters were obtained by genetic algorithm.

Originality/value

The method in this article can effectively predict aerostatic spindle vibration amplitude and perfect the stability of aerostatic spindle.

Article
Publication date: 3 July 2018

Dongju Chen, Jihong Han, Xianxian Cui and Jinwei Fan

To identify the dynamic feature of the aerostatic slider caused by gas film, an evaluation system by a piezoelectric acceleration sensor is presented in time and frequency domain.

Abstract

Purpose

To identify the dynamic feature of the aerostatic slider caused by gas film, an evaluation system by a piezoelectric acceleration sensor is presented in time and frequency domain.

Design/methodology/approach

The dynamic pressure fluctuation is evaluated by the wavelet transform, cross correlation analysis and power spectral density (PSD). Wavelet transform is used to process the measured result of the aerostatic slider and the signal is decomposed into high-frequency and low-frequency signal. Correlation analysis method is used to evaluate the impact of the initial gas gap on the fluctuation in time domain.

Findings

According to the PSD analysis of the processed signal in the frequency domain, the natural frequency of the aerostatic slider is identified from the measured signal in frequency domain; this method provides a basis for the identification of guideway errors.

Research limitations/implications

The method can also be applied to the error identification of other components of the machine tool.

Originality/value

Wavelet transform is used to process the measured result of the aerostatic slider by acceleration sensor, and the signal is decomposed into high-frequency and low-frequency signal. Correlation analysis method is used to evaluate the impact of the initial gas gap on the fluctuation in time domain. According to the PSD analysis of the processed signal in the frequency domain, the natural frequency of the aerostatic slider is identified from the measured signal in frequency domain; this method provides a basis for the identification of slider errors.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 August 2020

Dongju Chen, Shuai Kong, Jingfang Liu and Jinwei Fan

The purpose of this paper is to propose the pressure fluctuation to further evaluate and predict the dynamic and static characteristics of the aerostatic slider and improve the…

Abstract

Purpose

The purpose of this paper is to propose the pressure fluctuation to further evaluate and predict the dynamic and static characteristics of the aerostatic slider and improve the calculation accuracy of the aerostatic slider.

Design/methodology/approach

First-order velocity slip is introduced into the traditional gas-film fluid equation, and the numerical analysis method is used to solve the static performance of the aerostatic slider. The finite element analysis method is used to solve its dynamic characteristics.

Findings

It can be concluded from the simulation and experimental results that the model considering the velocity slip in the gas film flow is more accurate. The errors between the modal detection results and the vibration detection results (0.8%–5.8%) under speed slip are smaller than the traditional cases (23.7%–210%), which also verifies the correctness of the above conclusions.

Originality/value

In this paper, the method of simulation and experiment is used to prove that the first-order velocity slip model is more suitable to predict the dynamic response of the aerostatic slider than the condition without slip.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2020-0059/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 April 2024

Dongju Chen, Yupeng Zhao, Kun Sun, Ri Pan and Jinwei Fan

To enhance the performance of hydrostatic bearings, graphene serves as a lubricant additive. Using the high thermal conductivity of graphene, the purpose of this study is to focus…

Abstract

Purpose

To enhance the performance of hydrostatic bearings, graphene serves as a lubricant additive. Using the high thermal conductivity of graphene, the purpose of this study is to focus on the impact of graphene nano-lubricating oil hydrostatic bearing temperature rise at various speeds and eccentricities.

Design/methodology/approach

The thermal conductivity of graphene nano-lubricating oil was calculated by molecular dynamics method and based on the viscosity–temperature effect, the coupled heat transfer finite element model of hydrostatic bearing was established; temperature rise of pure lubricating oil and graphene nano-lubricating oil hydrostatic bearing were analysed at different speed and eccentricity based on computational fluid dynamics method.

Findings

With the increase of speed and eccentricity, the temperature rise of 0.2% graphene nano-lubricating oil bearings is lower than that of pure lubricating oil bearings; in addition with the increase of graphene mass fraction, the temperature rise of graphene nano-lubricating oil bearings is always higher than that of pure lubricating oil bearings, and the higher the speed, the more obvious the phenomenon.

Originality/value

The effects of graphene as a lubricant additive on the thermal conductivity of nano-lubricating oil and the variation of the temperature rise of graphene nano-lubricating oil bearings compared to pure lubricating oil bearings were analysed by combining micro and macro methods.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0388

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 November 2022

Dongju Chen, Xuan Zhang, Ri Pan, Kun Sun and Jinwei Fan

This research aims to combine the throttling structure with the elastic element to enhance the load performance of aerostatic radial bearing.

Abstract

Purpose

This research aims to combine the throttling structure with the elastic element to enhance the load performance of aerostatic radial bearing.

Design/methodology/approach

In this research, a fluid–solid coupling model of the elastic throttling structure is established while considering the interaction between the elastic element and the flow field. The effects of elastic element structural parameters on the stiffness and load capacity of aerostatic radial bearing are then researched. Finally, the effect of elastic element modulus on air film load performance and elastic element deformation is analyzed.

Findings

The results indicate that the aerostatic radial bearing with elastic element can significantly improve the load capacity and stiffness when compared to the common aerostatic bearing. By choosing the proper combination of parameters, the load performance can be improved by at least 16%.

Originality/value

The throttling structure of aerostatic bearing is optimized in this work, which significantly enhances the load performance of the aerostatic bearing.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 June 2018

Dongju Chen, Lihua Dong, Ri Pan, Jinwei Fan and Qiang Cheng

The purpose of this study is to investigate the coupling effects of the velocity slip, rarefaction effect and effective viscosity of the gas film on the performance of the…

116

Abstract

Purpose

The purpose of this study is to investigate the coupling effects of the velocity slip, rarefaction effect and effective viscosity of the gas film on the performance of the aerostatic guideway in micro-scale and improve the analysis precision of the static performance of aerostatic guideway.

Design/methodology/approach

The corresponding model of the gas film flow with consideration of the velocity slip, rarefaction effect and effective viscosity of the gas film in micro-scale is proposed. By solving the corresponding model, the bearing capacity and the stiffness of the aerostatic guideway are obtained through the pressure distributions of the air cavity. Through comparing the bearing capacity and the stiffness in different situations, the couple effects of the three factors are analyzed. Finally, the experimental results about the stiffness are obtained and the contrast between the simulation stiffness and the tested stiffness is achieved.

Findings

Through comparing the coupling effects of the micro scale factors under different conditions on the performance of the aerostatic guideway, it was found that when comparing the effects of a single factor, the effect of the first-order slip is the largest. When two factors are randomly combined, velocity slip and viscosity of the gas film is the largest, but these coupling effects are less than the effect of considering three factors simultaneously.

Originality/value

It is essential to consider the first-order velocity slip, the flow factor Q and the effective viscosity when analyzing the static performance of the aerostatic guideway in micro-scale. This makes studying the performance of the aerostatic guideway in micro-scale feasible and improves the machine’s accuracy.

Details

Industrial Lubrication and Tribology, vol. 70 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 April 2022

Peng Wang, Dongju Chen, Jinwei Fan, Kun Sun, Shuiyuan Wu, Jia Li and Yueqiang Sun

The purpose of this paper is to improve the performance and quality of Ti-6Al-4V fabricated by laser powder bed fusion.

Abstract

Purpose

The purpose of this paper is to improve the performance and quality of Ti-6Al-4V fabricated by laser powder bed fusion.

Design/methodology/approach

Single-track experiments were conducted during the fabrication process to obtain the single tracks with excellent wettability to narrow the process parameter window. The effects of process parameters on the build surface, cross-section, relative density, defects, surface roughness, microstructure and mechanical properties of the parts were analyzed through multilayer fabrication experiments and surface optimization experiments.

Findings

The point distance has the greatest influence on the build surface of the fabricated parts, and the unmelted defects can be eliminated when the point distance is 35 µm. The relative density of the fabricated parts decreased with the increase of the point distance, and the hatch spacing has different characteristics with respect to the relative density of the fabricated parts under different laser powers. It was observed that the most of experimental groups with higher relative densities than 99%, and the highest density could reach 99.99%. The surface roughness can be reduced to less than 10 µm through remelting optimization.

Originality/value

The research results can provide theoretical support for scientific researchers and data support for engineers.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 12