Search results

1 – 10 of 786
Article
Publication date: 18 March 2021

Fei Zhao, Xueyao Zheng, Shichen Zhou, Bo Zhou and Shifeng Xue

In this paper, a three-dimensional size-dependent constitutive model of SMP Timoshenko micro-beam is developed to describe the micromechanical properties.

Abstract

Purpose

In this paper, a three-dimensional size-dependent constitutive model of SMP Timoshenko micro-beam is developed to describe the micromechanical properties.

Design/methodology/approach

According to the Hamilton's principle, the equilibrium equations and boundary conditions of the model are established and according to the modified couple stress theory, the model is available to capturing the size effect because of the material length scale parameter. Based on the model, the simply supported beam was taken for example to be solved and simulated.

Findings

Results show that the size effect of SMP micro-beam is more obvious when the dimensionless beam height is similar or the larger of the value of loading time. The rigidity and strength of the SMP beam decrease with the increasing of the dimensionless beam height or the loading time. The viscous property of SMP micro-beam plays a more important role with the larger dimensionless beam height. And the smaller the dimensionless beam height is, the more obvious the shape memory effect of the SMP micro-beam is.

Originality/value

This work implies prediction of size-dependent thermo-mechanical behaviors of the SMP micro-beam and will provide a theoretical basis for design SMP microstructures in the field of micro/nanomechanics.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 August 2016

Xiaoli Kong, Bo Zhou, Jixiao Wang and Wenping Li

The purpose of this paper is to study the engineering application of diamond like carbon (DLC) coatings on the surfaces of piston pins and bucket tappets for a 2.0 L supercharged…

Abstract

Purpose

The purpose of this paper is to study the engineering application of diamond like carbon (DLC) coatings on the surfaces of piston pins and bucket tappets for a 2.0 L supercharged gasoline engine. The friction loss and durability of DLC-coated components were investigated.

Design/methodology/approach

The tribological characteristics were examined under oil-lubricated conditions in a CETR UMT reciprocating tribometer. In a motored engine test rig, friction loss torque test was performed to estimate the improvement in fuel economy. Fired engine durability bench tests of typical duration of 450 h were completed to access the durability and wear resistance of DLC coating. Before and after durability tests, coated and uncoated components were measured on the sliding surface by a profilometer technique.

Findings

Friction and wear test results show that DLC coating has low friction coefficient and reduces the wear rates by almost ten times compared to those of uncoated surfaces. Friction loss measurements indicate that DLC-coated tappets can reduce valve train friction loss by 29 per cent, and DLC-coated piston pins can reduce piston group friction by 11 per cent. Based on fired engine durability bench tests, it is evidenced that none of the coated tappets and pins show any noticeable peeling or delamination. Wear profiles analysis results indicate that DLC-coated engine components give rise to a substantial reduction in wear.

Originality/value

DLC coating applied onto the working surface of piston pin and bucket tappet can effectively reduce the friction loss of gasoline engine. DLC coating exhibits sufficient durability and improves friction and wear performance.

Details

Industrial Lubrication and Tribology, vol. 68 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 June 2022

Hong-Sen Yan, Zhong-Tian Bi, Bo Zhou, Xiao-Qin Wan, Jiao-Jun Zhang and Guo-Biao Wang

The present study is intended to develop an effective approach to the real-time modeling of general dynamic nonlinear systems based on the multidimensional Taylor network (MTN).

Abstract

Purpose

The present study is intended to develop an effective approach to the real-time modeling of general dynamic nonlinear systems based on the multidimensional Taylor network (MTN).

Design/methodology/approach

The authors present a detailed explanation for modeling the general discrete nonlinear dynamic system by the MTN. The weight coefficients of the network can be obtained by sampling data learning. Specifically, the least square (LS) method is adopted herein due to its desirable real-time performance and robustness.

Findings

Compared with the existing mainstream nonlinear time series analysis methods, the least square method-based multidimensional Taylor network (LSMTN) features its more desirable prediction accuracy and real-time performance. Model metric results confirm the satisfaction of modeling and identification for the generalized nonlinear system. In addition, the MTN is of simpler structure and lower computational complexity than neural networks.

Research limitations/implications

Once models of general nonlinear dynamical systems are formulated based on MTNs and their weight coefficients are identified using the data from the systems of ecosystems, society, organizations, businesses or human behavior, the forecasting, optimizing and controlling of the systems can be further studied by means of the MTN analytical models.

Practical implications

MTNs can be used as controllers, identifiers, filters, predictors, compensators and equation solvers (solving nonlinear differential equations or approximating nonlinear functions) of the systems of ecosystems, society, organizations, businesses or human behavior.

Social implications

The operating efficiency and benefits of social systems can be prominently enhanced, and their operating costs can be significantly reduced.

Originality/value

Nonlinear systems are typically impacted by a variety of factors, which makes it a challenge to build correct mathematical models for various tasks. As a result, existing modeling approaches necessitate a large number of limitations as preconditions, severely limiting their applicability. The proposed MTN methodology is believed to contribute much to the data-based modeling and identification of the general nonlinear dynamical system with no need for its prior knowledge.

Details

Kybernetes, vol. 52 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 30 September 2021

Shuai Wang, Fei Zhao, Bo Zhou and Shifeng Xue

A distributed piezoelectric actuator (DPA) improving the deformation performance of wing is proposed. As the power source of morphing wing, the factors affecting the driving…

147

Abstract

Purpose

A distributed piezoelectric actuator (DPA) improving the deformation performance of wing is proposed. As the power source of morphing wing, the factors affecting the driving performance of DPA were studied.

Design/methodology/approach

The DPA is composed of a substrate beam and a certain number of piezoelectric patches pasted on its upper and lower ends. Utilizing the inverse piezoelectric effect of piezoelectric material, the DPA transfers displacement to the wing skin to change its shape. According to the finite element method and piezoelectric constitutive equation, the structure model of DPA was established, and its deformation behavior was analyzed. The accuracy of algorithm was verified by comparison with previous studies.

Findings

The results show that the arrangement way, length and thickness of piezoelectric patches, the substrate beam thickness and the applied voltage are the important factors to determine the driving performance of DPA.

Research limitations/implications

This paper can provide theoretical basis and calculation method for the design and application of distributed piezoelectric actuator and morphing wing.

Originality/value

A novel morphing wing drove by DPA is proposed to improve environmental adaptability of aircraft. As the power source achieving wing deformation, the DPA model is established by FEM. Then the factors affecting the driving performance are analyzed. The authors find the centrosymmetric arrangement way of piezoelectric patches is superior to the axisymmetric arrangement, and distribution center of the piezoelectric patches determines the driving performance.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 June 2023

Bo Zhou, Abu Bakkar Siddik and Zheng Guang-Wen

One of the best ways to assist China is through infrastructure investment. China might become more resilient to natural calamities by pouring more money into its transport…

Abstract

Purpose

One of the best ways to assist China is through infrastructure investment. China might become more resilient to natural calamities by pouring more money into its transport network. Analyzing the relationship between China's degree of planned expansion and the country's current network of transport hubs can help with city development estimates. A wide range of factors were taken into consideration while evaluating China's dominance and the caliber of its transportation infrastructure. Using a geographical autocorrelation model and a coupling coordination model, the dynamic link between China's adaptability and the caliber of its transportation infrastructure is examined.

Design/methodology/approach

China's northwest is underdeveloped in comparison to the southeast, which has a high level of resilience and development of its transportation infrastructure. The relationship between the levels of resilience upheld by China's transport infrastructure is suggested to be coordinated.

Findings

The authors find a positive geographical autocorrelation between the degree of coupling coordination and the degree of agglomeration, despite the fact that the distance between cities increases with time. They now believe that there is a connection between an area's population density and the degree of interspousal cooperation within. The consequence is an improvement in both national security and economic prosperity. The facilities for disaster management and transportation in China have received several proposals for improvement.

Practical implications

The authors' Practical Implications suggests that scale inefficiency is a major contributor to the relatively poor efficiency of China's primary inland river ports. Different types of inland river ports may have vastly different water system efficiencies. Input and output congestion at China's important interior river ports has reached 51%, making it very clear that massive amounts of valuable port resources are being wasted.

Originality/value

Many variables, such as climate and human error, affect the total amount of goods that can be moved via inner river ports. Ports situated either higher up or lower down the same canal may perform better or worse, respectively, depending on the circumstances.

Details

International Journal of Retail & Distribution Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-0552

Keywords

Article
Publication date: 16 September 2022

Chenyang Mao, Bo Zhou and Shifeng Xue

Piezoelectric materials are widely used as actuators, due to the advantages of quick response, high sensitivity and linear strain-electric field relationship. The previous work on…

Abstract

Purpose

Piezoelectric materials are widely used as actuators, due to the advantages of quick response, high sensitivity and linear strain-electric field relationship. The previous work on the piezoelectric material plate structures is not enough; however, such structures play a very important role in the practical design. In this paper, the actuation performance of piezoelectric laminated plate actuator (PLPA) is analyzed based on Galerkin method to parametric study the shape control.

Design/methodology/approach

In this paper, the actuation performance of PLPA is analyzed based on Galerkin method to parametric study the shape control. The stress components of the matrix plate are formulated based on electro-mechanical coupling theory and Kirchhoff's classical laminated plate theory. The effectiveness of the developed method is validated by the comparison with finite element method.

Findings

The actuation performance of PLPA and its influencing factors are numerically analyzed through the developed method. The deflection of PLPA is reasonably increased by optimizing the electric fields, the piezoelectric patch and the matrix plate.

Originality/value

The Galerkin method can be used for engineering applications more easily, and it does not require to rebuild the calculation model as finite element method during the calculation and analysis of PLPA. This paper is a valuable reference for the design and analysis of PLPAs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 May 2022

Tian Feng, Yiru Huang and Bo Zhou

Current policies and research on carbon emissions focus on operational emission but overlook the importance of embodied and user-transport emissions in residential buildings. This…

168

Abstract

Purpose

Current policies and research on carbon emissions focus on operational emission but overlook the importance of embodied and user-transport emissions in residential buildings. This study built a comprehensive framework to assess the impact of life-cycle carbon emissions on different in-building open public spaces (open roof, open vertical garden, and open ground floor) in affordable housing.

Design/methodology/approach

A parametric model of a typical affordable housing building in Shanghai, China was constructed and 36 variations of open public spaces studied. Embodied, operational, and user-transport carbon emissions were quantified over 50 years.

Findings

The results show that the life-cycle carbon emissions decrease with the application of the open public space. In addition, the paper found that the carbon reduction due to user transport is seven times higher than the carbon increment due to construction and over long-term operation.

Originality/value

This paper provides quantitative evidence for carbon emissions and in-building open public spaces, and the authors suggest taking multiple aspects into account in addition to the structure of the building is crucial to sustainable building development.

Details

Open House International, vol. 47 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 19 August 2014

Mitsuo Ozawa, Zhou Bo, Yuichi Uchida and Hiroaki Morimoto

This paper investigates the relationship between spalling behavior and weight loss for ultra-high-strength fiber-reinforced concrete (UFC) containing different types short fibers…

Abstract

This paper investigates the relationship between spalling behavior and weight loss for ultra-high-strength fiber-reinforced concrete (UFC) containing different types short fibers (jute, PP, WSPVA) in high-temperature environments at 400, 600 and 800 °C. The explosive spalling that occurred under these conditions caused severe damage to the control specimen but only slight damage to the specimen with jute fiber. It was therefore inferred that adding 0.19% by volume of natural jute fibers (length: 12 mm) to UFC is effective in the prevention of spalling-related damage.

Details

Journal of Structural Fire Engineering, vol. 5 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Expert briefing
Publication date: 23 October 2015

Elite politics in China.

Details

DOI: 10.1108/OXAN-DB206048

ISSN: 2633-304X

Keywords

Geographic
Topical
Expert briefing
Publication date: 18 May 2020

Ideological conflict between China and the United States.

Details

DOI: 10.1108/OXAN-DB252660

ISSN: 2633-304X

Keywords

Geographic
Topical
1 – 10 of 786