Search results

1 – 4 of 4
Article
Publication date: 4 October 2022

Samira Jalili, Mohammad Amerzadeh, Saeideh Moosavi, Abdollah Keshavarz, Rouhollah Zaboli, Seyed Saeed Tabatabaee and Rohollah Kalhor

Strategic orientation is one of the critical principles affecting the marketing and strategy selection of an organization’s activities, reflecting the strategic tendencies…

Abstract

Purpose

Strategic orientation is one of the critical principles affecting the marketing and strategy selection of an organization’s activities, reflecting the strategic tendencies implemented by the organization to create behaviours, leading to organizational efficiency and better employee performance. Therefore, this paper aims to study the relationship between strategic orientation and performance in Qazvin teaching hospitals through green supply chain management (SCM) to improve employees' performance.

Design/methodology/approach

This was a descriptive– analytical and cross-sectional study. The total number of employees in medical centres was 2,256 people. According to Morgan’s table, the required number of samples was 328, including 10% of the sample loss. The questionnaire was given to 365 staff in different hospitals in proportion to the number of staff. Two statistical software, SPSS24 and AMOS23, were used to evaluate the results.

Findings

All three variables were relatively moderate in the hospitals. The results of evaluating the structural model of the research showed that all the studied hypotheses were significant, except for the relationship between organizational performance and strategic orientation hypothesis. The results also show that this model had a good fit.

Practical implications

The findings can lead to saving the environment, creating a better social image and reducing costs and profitability, allowing managers to know the strategic orientations rather than depending on institutional pressure issues and monitoring guidelines.

Originality/value

Considering the significant relationship between the dimensions of green SCM and the hospitals’ performance, the authors suggest: establishing multilateral co-operation in environmental issues, improving the environmental status of hospitals, reducing waste rates and paying attention to social responsibility of hospitals. In addition, the findings help hospital management to comprehensively understand the strategies for implementing green SCM procedures.

Details

International Journal of Human Rights in Healthcare, vol. 17 no. 2
Type: Research Article
ISSN: 2056-4902

Keywords

Article
Publication date: 4 December 2018

Navid Moghaddaszadeh, Saman Rashidi and Javad Abolfazli Esfahani

This paper aims to use the second law of thermodynamic to evaluate the potential of gear-ring turbulator in a three-dimensional heat exchanger tube. Accordingly, a numerical…

Abstract

Purpose

This paper aims to use the second law of thermodynamic to evaluate the potential of gear-ring turbulator in a three-dimensional heat exchanger tube. Accordingly, a numerical simulation is performed to obtain the irreversibilities in a three-dimensional heat exchanger tube equipped with some gear-ring turbulators for turbulence regime.

Design/methodology/approach

A numerical simulation is performed to obtain the irreversibilities in a three-dimensional heat exchanger tube equipped with some gear-ring turbulators for turbulence regime. The analysis is carried out based on shear stress transport (SST) k-ω turbulent model. The influences of different parameters containing tooth number, free-space length ratios and Reynolds number on frictional and thermal irreversibilities and Bejan number are discussed.

Findings

The results indicated that the thermal irreversibility reduces by decreasing the tooth number. For example, the thermal entropy generation decreases about 25.81 per cent by decreasing the tooth number in the range of 24 to 0 at Re = 6,000. Moreover, the frictional entropy generation decreases by increasing the tooth number as the gear with more tooth number causes a lower flow disturbance.

Originality/value

The present study arranged a numerical work to study the potential of a gear-ring turbulator in a heat exchanger tube from first and second laws of thermodynamic viewpoint. The turbulent flow is considered for this problem. The literature review showed that the usage of a gear-ring turbulator in a heat exchanger tube is not investigated from the second law of thermodynamic viewpoint by previous studies. As a result, the influences of different parameters containing tooth number, free-space length ratios and Reynolds number on frictional and thermal irreversibilities and Bejan number are discussed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 September 2019

Seyed Amin Bagherzadeh, Esmaeil Jalali, Mohammad Mohsen Sarafraz, Omid Ali Akbari, Arash Karimipour, Marjan Goodarzi and Quang-Vu Bach

Water/Al2O3 nanofluid with volume fractions of 0, 0.3 and 0.06 was investigated inside a rectangular microchannel. Jet injection of nanofluid was used to enhance the heat transfer…

Abstract

Purpose

Water/Al2O3 nanofluid with volume fractions of 0, 0.3 and 0.06 was investigated inside a rectangular microchannel. Jet injection of nanofluid was used to enhance the heat transfer under a homogeneous magnetic field with the strengths of Ha = 0, 20 and 40. Both slip velocity and no-slip boundary conditions were used.

Design/methodology/approach

The laminar flow was studied using Reynolds numbers of 1, 10 and 50. The results showed that in creep motion state, the constricted cross section caused by fluid jet is not observable and the rise of axial velocity level is only because of the presence of additional size of the microchannel. By increasing the strength of the magnetic field and because of the rise of the Lorentz force, the motion of fluid layers on each other becomes limited.

Findings

Because of the limitation of sudden changes of fluid in jet injection areas, the magnetic force compresses the fluid to the bottom wall, and this behavior limits the vertical velocity gradients. In the absence of a magnetic field and under the influence of the velocity boundary layer, the fluid motion has more variations. In creeping velocities of fluid, the presence or absence of the magnetic field does not have an essential effect on Nusselt number enhancement.

Originality/value

In lower velocities of fluid, the effect of the jet is not significant, and the thermal boundary layer affects the entire temperature field. In this case, for Hartmann numbers of 40 and 0, changing the Nusselt number on the heated wall is similar.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 October 2018

Ali Rahimi Gheynani, Omid Ali Akbari, Majid Zarringhalam, Gholamreza Ahmadi Sheikh Shabani, Abdulwahab A. Alnaqi, Marjan Goodarzi and Davood Toghraie

Although many studies have been conducted on the nanofluid flow in microtubes, this paper, for the first time, aims to investigate the effects of nanoparticle diameter and…

Abstract

Purpose

Although many studies have been conducted on the nanofluid flow in microtubes, this paper, for the first time, aims to investigate the effects of nanoparticle diameter and concentration on the velocity and temperature fields of turbulent non-Newtonian Carboxymethylcellulose (CMC)/copper oxide (CuO) nanofluid in a three-dimensional microtube. Modeling has been done using low- and high-Reynolds turbulent models. CMC/CuO was modeled using power law non-Newtonian model. The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices.

Design/methodology/approach

Present numerical simulation was performed with finite volume method. For obtaining higher accuracy in the numerical solving procedure, second-order upwind discretization and SIMPLEC algorithm were used. For all Reynolds numbers and volume fractions, a maximum residual of 10−6 is considered for saving computer memory usage and the time for the numerical solving procedure.

Findings

In constant Reynolds number and by decreasing the diameter of nanoparticles, the convection heat transfer coefficient increases. In Reynolds numbers of 2,500, 4,500 and 6,000, using nanoparticles with the diameter of 25 nm compared with 50 nm causes 0.34 per cent enhancement of convection heat transfer coefficient and Nusselt number. Also, in Reynolds number of 2,500, by increasing the concentration of nanoparticles with the diameter of 25 nm from 0.5 to 1 per cent, the average Nusselt number increases by almost 0.1 per cent. Similarly, In Reynolds numbers of 4,500 and 6,000, the average Nusselt number increases by 1.8 per cent.

Research limitations/implications

The numerical simulation was carried out for three nanoparticle diameters of 25, 50 and 100 nm with three Reynolds numbers of 2,500, 4,500 and 6,000. Constant heat flux is on the channel, and the inlet fluid becomes heated and exists from it.

Practical implications

The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices.

Originality/value

This manuscript is an original work, has not been published and is not under consideration for publication elsewhere. About the competing interests, the authors declare that they have no competing interests.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 4 of 4