https://www.emerald.com/insight/2210-8327.htm

The current issue and full text archive of this journal is available on Emerald Insight at:

The systems architecture ontology
(SAO): an ontology-based design
method for cyber—-physical systems

Diego Camara Sales
Automation, Federal Institute of Education Science and Technology Amazon,
Manaus, Brazil

Leandro Buss Becker
Automation and Systems, Federal University of Santa Catarina,
Flovianopolis, Brazil, and

Cristian Koliver
Information Systems, Federal University of Santa Catarina, Florianopolis, Brazil

Abstract

Purpose — Managing components’ resources plays a critical role in the success of systems’ architectures
designed for cyber—physical systems (CPS). Performing the selection of candidate components to pursue a
specific application’s needs also involves identifying the relationships among architectural components, the
network and the physical process, as the system characteristics and properties are related.
Design/methodology/approach — Using a Model-Driven Engineering (MDE) approach is a valuable asset
therefore. Within this context, the authors present the so-called Systems Architecture Ontology (SAO), which
allows the representation of a system architecture (SA), as well as the relationships, characteristics and
properties of a CPS application.

Findings — SAO uses a common vocabulary inspired by the Architecture Analysis and Design Language
(AADL) standard. To demonstrate SAO’s applicability, this paper presents its use as an MDE approach
combined with ontology-based modeling through the Ontology Web Language (OWL). From OWL models
based on SAQ, the authors propose a model transformation tool to extract data related to architectural
modeling in AADL code, allowing the creation of a components’ library and a property set model. Besides
saving design time by automatically generating many lines of code, such code is less error-prone, that is,
without inconsistencies.

Originality/value — To illustrate the proposal, the authors present a case study in the aerospace domain with
the application of SAO and its transformation tool. As result, a library containing 74 components and a related
set of properties are automatically generated to support architectural design and evaluation.

Keywords System architecture, Ontology-based model design, AADL model Transformation
Paper type Research paper

1. Introduction

A systems’ architecture (SA) model is devoted to describing the structure, behavior and views
of a given system [1], where the architectural description offers a representation of the
components, features and properties of the systems, which could represent an SA. However,
managing the components within cyber—physical systems (CPS) that make intensive use of
sensors and actuators, probably requiring modifications along its life cycle, is a laborious and
error-prone task. Tasks such as identifying the relationships between components,

© Diego Camara Sales, Leandro Buss Becker and Cristian Koliver. Published by Applied Computing and
Informatics. Published by Emerald Publishing Limited. This article is published under the Creative
Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create
derivative works of this article (for both commercial and non-commercial purposes), subject to full
attribution to the original publication and authors. The full terms of this licence may be seen at http:/
creativecommons.org/licences/by/4.0/legalcode

The systems
architecture
ontology

Received 14 September 2021
Revised 13 November 2021
16 December 2021

Accepted 26 December 2021

C

Applied Computing and
Informatics

Emerald Publishing Limited
eISSN: 2210-8327

p-ISSN: 2634-1964

DOI 10.1108/ACI-09-2021-0249

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/ACI-09-2021-0249

ACI

subsystems and other model elements affected by eventual component modifications need to
be properly addressed.

Typically, the architectures of CPS are modeled using architecture description languages
(ADLSs) such as the Systems Modeling Language (SysML) [2] and the Architecture Analysis
and Design Language (AADL) [3], which have been used for the specification, analysis and
behavior evaluation of complex systems. AADL allows constructing a lower-level system
view, combining hardware and software components and covering real-time and other
system’s properties [4]. SysML provides conceptual representation, systems vision, static and
behavioral system representation, as well as requirements and parametric diagrams, but, in
contrast with AADL, it does not cover details about software entities, hardware components
and detailed properties specification (such as the real-time ones).

AADL is one of the most widespread languages given its capability to model embedded
systems and perform analyses from the models. It also includes facilities for developers to
create plug-ins for expanding the analyses’ capacity. However, it was noticed that, in
complex projects, it is difficult to start the development of an SA by writing AADL
code without understanding the physical process relationship with the architectural
components. Therefore, a design solution using a higher level of abstraction was explored in
this work.

In computer science, ontology is a means of highlighting the features, characteristics,
attributes and properties or parameters of a subject/area and showing how they are related,
by defining a set of concepts and categories [5]. Using an ontology in the initial phase of CPS
design helps designers to represent the “system-under-construction” in a more formal
manner, thereby allowing the evaluation of semantic (in-)consistencies through the
ontological domain properties, such as time constraints, security and performance [6],
inference to assess inconsistencies using logical deduction and design patterns [7],
viewpoints integration in the CPS development [8].

An ontology dedicated to SA allows the modeling of concepts related to the composition/
structure of the architecture, software and hardware components and its features. This
brings into light details about the interaction of the SA with the physical process providing a
knowledge base that can be used in multiple areas and representing different views of the
system. Thereby, computational tools can be used to assess the existence of inconsistencies in
the design of the SA, reuse the knowledge base from domain and applications, providing data
to modeling CPSs.

However, declaring the ontology entities to represent the SA in such a way that it can be
aligned with the Model-Driven Engineering (MDE) model-to-model (M2M) transformation
process and common vocabulary is not an easy task. Thereby, it is crucial to solve or mitigate
the aforementioned problems, and ADLs can provide a knowledge base about components
and relationships. ADLs are a linguistic approach to the formal representation of
architectures that is widespread in the scientific and systems engineering community.
Therefore, ADLs can be used in a reverse engineering process, providing a knowledge base
for the creation of an ontology to represent components within properties and characteristics
related to the SA domain.

The main contributions of this paper can be summarized as follows. Firstly, it presents the
Systems Architecture Ontology (SAO) to represent hardware, software, system components
and their relationships in order to support engineers in detailing the SA and identifying
inconsistencies in architectural design and component compatibility. SAO design is based on
the AADL, which provides terminologies, vocabulary and concepts that can be reused. A
second contribution is a plug-in to the Open Source AADL Tool Environment 2 (OSATE2),
which transforms an Ontology Web Language (OWL) model into an AADL model. The OWL
model, with an SAO description, is used as a source file in the model transformation process
where the data are extracted to create a set of AADL target models. As benefit from such

proposal, it allows saving design time by automatically generating many lines of code, also
with the understanding that such code is less error-prone, that is, without inconsistencies.

The remainder of this paper is organized as follows. Section 2 presents relevant related
works. Section 3 details the proposed SA ontology, also discussing the applied methodology to
build it. Section 4 describes the process to transform an OWL model into an AADL model and
the tool set designed for this. Section 5 shows an unmanned aerial vehicle (UAV) domain
ontology example of alignment with SAO and the respective model transformations. Section 6
presents our conclusions and perspectives on future work.

2. Related works

Different authors and organizations have proposed ontologies to represent areas and
applications that somehow integrate the components of a system’s architecture. For example,
the IoT-Lite ontology represents Internet of Things (IoT) resources and services [9], covering
platform representation and communication. The IEEE-RAS ontology standard was
proposed to represent autonomous robots (ROA) [10]. The World Wide Web Consortium
(W3C) proposed two ontologies related to sensor networks: the Semantic Sensor Network
(SSN) and the Sensor, Observation, Sample and Actuator (SOSA) [11].

However, the aforementioned ontologies do not cover component-related topics in totality,
lacking information regarding their implementation, software connection, bus
communication and resource allocation, from software to hardware, which is necessary to
represent an SA design, highlighting the need to create a new ontology. There are many
methodologies devoted to building an ontology [12-15], and many encourage the reuse of
modules and ontologies seeking to maintain a standard, common vocabulary and other
benefits cited by W3C [11].

Regarding the practical application of ontologies in the design of CPS, some works
evaluate consistency during integration, formalizing the interrelationships between the
different views. In [6, 16], it is tackled inconsistency in the context of different design
processes. Such issue is also covered in [17], which provides reasoning techniques that allow
achieving greater understanding of CPS.

Regarding CPS architecture design, MDE approaches and ADLs are used during activities
or steps aiming to represent SA. ADL helps to promote mutual communication and allow the
early analysis and feasibility testing of architectural design decisions [18]. Thus, developing
an ontology for SA development based on ADL helps to represent common concepts, aligning
vocabularies and knowledge.

Given the limited expression power of the existing languages to model ontologies, the
W3C released, in 2004, a new language called Web Ontology Language (OWL). OWL is a
semantic web language to represent relationships and interactions among entities and
groups of entities based on a Resource Description Framework (RDF) that describes the
conceptual structure of OWL ontologies. OWL 2 extends OWL with a small but useful set of
features that have been requested by users, for which effective reasoning algorithms are now
available, and which OWL tool developers are willing to support [19]. Furthermore, such a
structural specification of OWL 2 provides the foundation for the implementation of tools
such as “reasoners,” so that other facts can be inferred that are implicitly contained in the
ontology.

OWL 2 is a general-purpose modeling language not tied to a specific domain, such as UML
and SysML. Usually, in the scientific community, system requirements modeled on UML and
SysML sources are used in an OWL transformation model [20-23]. This is due to the
similarity of the structure of languages that are based on RDF metamodels and that can be
used in the creation of rules, mappings and extensions or additional elements to become OWL
ontology.

The systems
architecture
ontology

ACI

Differently from OWL, UML and SysML, domain-specific modeling languages (DSMLs)
cover a range of abstraction levels for a particular domain and support conservation and
reuse. DSMLs (e.g. AADL) often support automatic source code generation from DSML
models.

For instance, AADL is a DSML from Society of Automotive Engineers (SAE) [24] that is
intended to offer a unified framework for model-based software systems engineering. AADL
can capture static structure and dynamics in a single architecture model and annotates it with
information that is relevant to the analyses of characteristics.

AADL models represent SA as a hierarchy of interacting components. In total, AADL
provides ten component categories to define software, hardware and composite system
components. Software component categories are data, subprogram, thread, thread group and
process. Hardware component categories are memory, processor, bus and device. Lastly, the
system component is composed of hardware, software or both hardware and software
components. In addition, AADL supports the early prediction and analyses of capabilities
and operational quality attributes (such as performance, reliability and security) [3] in SA
projects.

Behjati ef al. [25] provide an overview of an AADL model, representing its main concepts
and their relationships, based on the AADL reference manual [3]. These core concepts were
elaborated as metamodel abstractions describing a system in terms of their components,
interfaces and connectors between the interfaces. Metamodels support the model
transformation process, aiding the exchange of OWL data and representation of SA
through AADL.

Other MDE-based designs proposed the transformation of models, such as UML-MARTE
[26] SysML [4] and SIMULINK [27], to AADL with a focus on data having the same
representation in architecture and consistency. In the present work, we show an approach
that serves to transform OWL models into AADL models. The transformation process
follows the principles of MDE and requires metamodels of source and target models.

3. Adopted design methodology

This section describes the SAO design, detailing the adopted steps that supported its
development and defining the entities that make up our proposal. Such a proposal was
mspired by the ontology design methodology guide presented in [15]. It consists of seven
steps used in the development of SAQ, as further described.

Step 1 focuses on determining the domain and scope of the ontology. Considering the
knowledge base provided by ADLs that provide the structure and detailed description of the
components and relationships, we define the main nomenclature, concepts and vocabulary
used in SAO design. Thereby, starting with a model representing the SA in the AADL
language, we define the initial concepts from SA hardware components (devices, processors,
memory and buses), software (process and threads) and their interaction (connections and
binding).

Step 2 targets the reuse of existing SA ontologies to build a wider SA ontology. Reuse
enables object-oriented design, providing the flexibility to structure the ontology in a target
domain by adapting the desired module. In this case, we reused the SOSA and SSN with
System Capability Module (SCM) ontologies to extend S&A representation with Quantity,
Unit, Dimensions and data Types ontology (QUDT), which can be applied to the properties of
SA [28].

In Step 3, we integrated the selected ontologies by aligning the modules, entities,
terminologies and vocabulary to the outline of the target ontology. Considering that the SA
ontology has reference to AADL, its components compose the ontology classes that guide the
mapping and alignment.

Afterward, in Step 4, we declared the SAO classes based on the AADL models’ structure
using the AS5506C standard [24] and reusing imported classes. SAO classes represent the
hardware, software and system components of an SA. An important premise when designing
SAOQ is to reuse ontologies aligned with the SAQ’s domain and its components. In Figure 1,
SAO classes are presented. The sao:Sections class represents the contents of
sao:ComponentType and sao:ComponentImplementation and includes a set of sao:Features
and sao:Properties descriptions. The sao:Features class represents the interface of
components. The sao:Properties class represents the characteristics of components and
has a relationship with the reuse sao:SystemCapabilityModule class. Another class is
sao:Connections, which represents the interconnection between components. sao:Annex,
sao:Modes, sao:Flows, sao:Prototypes and saoextends are classes that support the
representation of the content of component types and implementation, which will be
presented later. The sa0:SOSA class represents the reuse of sensor- and actuator-imported
classes that need to be aligned.

With ssn-scm:SystemCapabilityModule, classes are imported from the SSN ontology to
represent a set of properties that describe operations, conditions and system properties that
have a relationship with the sao:Properties class. Extending the SCM, we include the
ComponentProperty subclass, which describes additional characteristics from S&A that
cover hardware, software and architecture design presented in a previous work (omitted due
blind review process).

In Step 5, we defined the objects’ properties. From the SAO classes and AADL metamodel
structure of relationships, we defined a set of object properties to represent the relationship

The systems
architecture
ontology

> QuDT > PropertySet
> SOSA v Sections
v SystemArchitecture =00 Annex
Componentimplementation Calls
A ComponentType Connections
\ Application Extends
Data i Extends
Process > Features
Subprogram H Flows
Thread > Modes
ThreadGroup > Properties
V- § Composite } Prototypes
System : SubComponents
v ExecutionPlatform SystemCapabilityModule
- Bus v Property
ai"::w »-- @ ComponentProperty
Processor = Condition
. > Operating Property
VirtualBus .

. @ VirtualProcessor i Opershag Fange
> PropertySet > Surv!val Property
v sections = Survival RangeA)

Annex ; System Capability
Calls > System Property
Connections System
Extends
Extends

> Features

: Flows

> Modes

> Properties
Prototypes

SubComponents

Figure 1.

SAO classes, with
reuse, modeled in
Protegé tool

ACI

between the classes of component, implementation and description of content, as shown in
Table 1.

According to the ADL model, the components of the architecture can be defined as types
and modeled in a structure of sections that can be aggregated as needed by the designer. Each
section seeks to detail the specific characteristics and properties reserved for the modeled
component. Here, AADL indicates that the component type can be represented by seven
sections, where the classes sao:Application, sao:Composite and sao:ExecutionPlatform and
subclasses can be represented with this structure. These sections are shown in the order in
which they are declared. Features, in which interfaces of a component are declared, such as
ports, and require bus access, reflect data traffic. Flow allows the representation of the flow
through a component without exposing the component’s implementation. The sao:Modes
section allows operational modes of the component. The sao:Prototypes section allows the use
of the top parameters the component type as a template. sao:Extends refines the component
type template, and the sao:Properties section is where values are declared for properties
associated with a component.

The component implementation has sections that are intended to declare how its
structure, interactions and interconnections are organized. Thus, sao:Sections, similar to
component types such as properties and attachments, has a scope aimed at describing details
at the level of implementation and individual of the sao:Subcomponents that comprise it.

In Step 6, we defined the data and value type used in the ontology to represent some kind
of data. In this step, the data properties assigned to the data representation classes (domain)
and range (type of data) are declared. Usually, data types and values are modeled using a
schema definition language to support a wide variety of data representation (i.e. XML Schema
Definition language — XSD).

Data and data types are declared following a proposed structure based on AADL. With
this structure, there is less effort when aligning the OWL and AADL languages, supporting
the model transformation process; an example is shown in Figure 2. The data structure is as
follows: declaration of the name of the data property — in this case, the mass measurement
unit qudt:Mass; declaration of the type of class to which it belongs, for example, mass is a
subclass of qudt: Weight; declaration of the measurement unit, reusing the QUDT ontology
that provides the unit that we will use in this measurement represented with the terminology
(g); declaration of the maximum (ValueMax) and minimum (ValueMin) allowed values and
data type — considering the application, the components must have a mass less than 2000 g
and are represented in integer data type:xsd:int. In total, 18 types of data were declared, which
can be added in the future depending on the application of the SA and its components.

Lastly, in Step 7, we created a set of individuals to represent the materialization of the
components of a CPS architecture in a specific application, which can be used to provide data
for models in life cycle projects.

Individuals can represent a generic or precise description of classes. Generic individuals
represent some description not related to components but related to the capability, comments
or descriptions of the system (e.g. colors, unit of measurement and words). Precise
descriptions represent a component type, component implementation, property set,
capability and sections, which detail technical specifications. For components and
implementation types, we have a set of related classes for representation. Thus, the
individual can contain, through object properties assertion, a set of individuals from sections
and capabilities types to describe their features and properties.

By completing the steps, the ontology is consolidated and provides a knowledge base for
the semantic evaluation of an individual architecture, a physical process that represents the
environment and control plant, measurement units and the network used in a specific domain.

It is important to highlight that SAO can be reused in other domains to support the
representation of the architecture. For example, the aerospace domain has an area-specific

B Y > —~ .8
£ 5 LE
2532 23
n o m h 2
A= hin
M=l g
27 £
<
= 2
1%
sjusuodwo)gngsey uonedo[[ysngsey syustuRduuy Kpdorgsey J0SS9001JSeY
peaqysey JOuonejuswdwyst Agpajuswarduurst uonejuswR[dwssadoIsey $S9001JSeY
dnoinpeary] sey SOPOJAISBY JOMEJST J0d4sey S91.10d0I JULION B[JUONIIXHSBY
sontedoigsey SMO[ey Jusuodwo)gngst ULIOJ) B[JUOLINIIXFSBY NA3([SBY
JOUOTIIAGST SPUAIXHSEY sngaambax BIR([SEY UOT}O8UUO))SEY]
sadAj0j01sey UOI}BIO[[{7SSA0IJSBY JURUOdWO)NAJ(ST ssngsey santedoigeysodwo)sey
XUUySey UOTI09UUO))SSIIY SSNESBY Juau0dWO)PIIAJ([SBY sonaedoigmguonedrddysey SUIPUIGUOLIaUUO)[BNOY
9d4 1 yusuodwo)st SUOOUUO)SBY Kredoiqiusuodwo)sey Jusuodwo)) Surpulyg £108918)0] SSUO[a(
S9INJBd,JSey S[reDsey san.10do1JaotAd(sey Ssaooyssngsey adA 1 pre(Iseq

Aadoad 192090 S

ACI

Figure 2.
SA data property
example

e owl-topDataPrope Annotations: Mass

N Accelerometer_Accuracity

Annotations

- [l BatteryCapacity
B flightDuration rdfs:comment
-l FlightRange Kg->g*1000
B hasUpperValue T->Kg*1000
-l isOutOfRange
= Kilogram rdfs:isDefinedBy
I longitude .
I Mass Weight
- payloadCapacity unit
-l Period

hitp:/iqudt.org/1.1/vocabl/unitig

B Power_Consume
-l Processor_Frequency

ValueMax [type: xsd:int]
B pwm_data

-l Rpm_per_Volt 2000
I Stall_Torque .

.. time:second ValueMin [type: xsd:inf]
B Torque 0

vocabulary to represent UAVs and can use SAO to represent SA. Similarly, automotive
application ontologies can benefit from SAO due to AADL-based component representation
that is aligned with the SAE standard.

Ontologies related to SA, that is, representing components of the architecture, can be
aligned to SAO in order to expand the representation of the system. Because SAQ is based on
AADL, OWL models can be used as input in the model transformation process to generate
complementary architectural models in AADL to analyze the system’s capability.

4. OWL model transformation to AADL

From the OWL domain model used as the source in the transformation engine, a set of
activities are performed for identifying the architecture-related individuals, which lead in the
generation of an AADL model package from OWL entities, data and properties that are
related to the SA. This requires the mapping and creation of a set of rules and declarations
that support the transformation engine presented in this section.

The generated AADL package contains three files, so that it is in accordance with the good
practices to create AADL models [29], supporting a modular architecture design. Such files
aim to represent: (1) the set of properties that compose measurements and units used by SA;
(2) the architecture of the implemented system; and (3) the components library.

The OWL2AADL plugin was developed within this work to support this process. It is
available on GitHub [1].

The transformation process requires the OWL Model source to conform to SAO and reuse
structure and RDF/XML syntax. Based on the MDE method of M2M transformation, the
OWL and the AADL metamodels are used to provide data structure and to create a set of
specifications and rules.

In Figure 3, we present the transformation engine flow. The Transformation Specification
block defines the mapping and relationships from OWL entities using SAO and reuse
structure and the AADL structure model to process a set of Transformation Rules to generate
an AADL model as output.

In the Transformation Specification block, OWL entities are defined based on the OWL2
metamodel [19], mapping classes, object properties and data related to the structure of the
AADL model and its elements. The Transformation Rules block uses the data provided by

the transformation specification block to create a set of rules to process the OWL model input
and create an AADL model output file.

Transformation Rules process OWL entities with relationships with AADL components
through mapping, as shown in Table 2. The OWL Class is a component related to SA, sections
or system capability. Individuals represent component features and properties, depending on
the type of object property defined. ObjectProperty is used to composite AADL components,
SA implementation and the property set. It also describes the relationship between the classes
of the architecture components and the knowledge base.

DataProperties is dedicated to the model measurement objective and units of SAO and has
a relationship with the AADL property set file. However, the property set has a distinct
declaration structure, which is covered in more detail in the next table. NamedIndividual is
related to individual components and properties. In this case, it is only dedicated to individual
components as the DataProperties cover properties in property set modeling. From
DataRange, we defined the list of components that applies a set of properties. Lastly,
AnmnotationProperty provides information to the AADL property set, such as metric unit
conversion.

AADL models enable architectural assessments and analyses based on the declaration of
properties. These properties are modeled in a separate file called the PropertySet, which has a
defined structure composed of property type declaration, property constant declaration and
property declaration.

Property type defines a type for the values that are acceptable to a property, establishing a
name and the set of legal values for a property of this type through a type definition. Property
definition provides the name and type of properties used by AADL elements. Property
constants are property values that are known by a symbolic name and can be used wherever
the value itself is allowed [3].

Thereby, to support the fulfillment of properties in AADL model declaration, we defined a
set of seven DataProperties that should be followed as a standard in modeling the data
property to SAO property assertions, as shown in Table 3. The type indicates the name of the
property set, to support the creation of different property set files. Units define the

Meta model
Structure
conform to conform to
SA Ontology and conform to AADL
Strucuture model

reuse strucuture
conform to

AADL
Model

use, use

Transformation

Specification

conform to

OWL Domain n
Model pu

use

Transformation

Rules output:

i

OWL entities AADL element

Class Components related to SA, sections or capability
Individuals Components and features used

DataProperties Property set from SA components

ObjectProperty Define composite components

DataRange List of components to which specific property belongs
AnnotationProperty A comment that provides information to AADL property set

The systems
architecture
ontology

Figure 3.

OWL to AADL
transformation engine
process

Table 2.
Relationships among
OWL entities and
AADL components

ACI

Table 3.

OWL data properties’
definitions for AADL

property set

measurement units of data, which can be declared by QUDT measurement and the unit’s
ontology; constant supports the constant numerical value of a measurement unit; Valuemin
and Valuemax are used to define numerical values to support range value declaration and
Range defines, which components of the architecture can use a created property.

In Table 4, we summarize the alignment between the OWL data type and basic property
type constructors provided by the AADL standard. In this case, OWL data type declarations
are defined to support the fulfillment of the model transformation process, following a set of
variables to support the construction of the AADL property set and enabling the AADL
plugin analyses in the OSATEZ2 tool.

The transformation rules block is composed of two sequential activities. The first is to
transform the OWL file in Java objects related to the OWL structure. In the second activity,
these objects were transformed to Java objects related to the AADL model structure through
transformation Specification, where objects related to AADL are used as the basis for creating
AADL files.

In the first activity, we used a library to process and transform the OWL file into Java
objects. Because it is based on XML, the tool uses the standard Java library (available in the
org.w3c.dom package) widely used in the development of tools. This library returns a Java
object containing the entire contents of the file.

The OWL2AADL tool searches for the node Class; in the sequence DataProperties and
ObjectProperty; and, finally, Individual. It is important to follow this order because of the
references defined by the OWL2 structure model. For example, an Individual node contains
references to one or more owl nodes: Class, DataProperties and ObjectProperty.

Finding a defined node, the tool starts an individualized treatment: it checks the subnodes
and their attributes. This scan looks for components as defined in the knowledge base and
SAO. From this scan, the data are separated to be used in the conversion. Entities that do not

OWL data properties AADL property set

<owl:DataProperties rdf:about="http. . .#type”/>
<owl:DataProperties rdf:about=“http. . .#constant”/>
<owl:DataProperties rdf:about="http. . .#unit"/>
<owl:DataProperties rdf:about="‘“http. . .#Valuemin”/>
<owl:DataProperties rdf:about="http. . .#Valuemax”/>
<rdfs:domain rdfiresource="“http. . .#AADLComponent”/>
<rdfs:isDefinedBy rdf:resource="“http. . .#Measurement”/>
<owl:DataProperties rdf:about="http. . .#Range”/>

Property type declaration
Property constant declaration
Property declaration

Table 4.

OWL and AADL data

type alignment
declarations

OWL data types AADL property types

xsd:boolean aadlboolean
xsd:string aadlstring
sao:enumeration enumeration
sao:units units
owlreal aadlreal
xsd:int aadlinteger
saorange range of
sao:classifier classifier
sao:comment reference
sao:record record

org.w3c.dom

follow the defined rules are ignored and may be included in the future to represent other
domains.

The second activity occurs in the conversion of OWL-related objects to AADL-related
objects. In this activity, the tool creates a set of files, including a library component, AADL
package and property set. After conversion at the Java object level, AADL-related objects are
used to guide the writing of AADL files.

5. Case study
In order to illustrate the SAO application, including the model transformation from OWL to
AADL, a case study related to the development of a UAV is presented in this section. Such a
UAV design is, in fact, part of a research effort named ProVant. It involves two Brazilian
research institutions, the Federal University of Minas Gerais (UFMG) and the Federal
University of Santa Catarina (UFSC), in collaboration with the University of Seville (Spain).
Since the beginning of ProVant, four aircraft prototypes have been designed. Besides
enhancing the flight properties, each new version aims to enhance the problems encountered
in the predecessor project. The fourth-generation aircraft is currently under construction, and
this study collaborated to refine the draft design (version 4.0) to the one that is in fact being
constructed (version 4.1).

This section is organized in two parts. Section 5.1 relates to the application of SAO to
develop the OWL model of the Provant 4.0 aircraft. Next, in 5.2, we show the transformation
of the OWL model into AADL through the developed OWL2AADL tool.

5.1 ProVANT 4.0 OWL model

In order to present more details regarding the representation of the aircraft (mechanical,
structural parts), an ontology dedicated to UAVs called drone ontology [30] was reused,
which is a knowledge base in the aerospace domain. In this way, it was possible to detail the
physical process of CPS, such as the type of mission and application, and the aircraft
components (i.e. fuselage, payload, landing and lift system, engine type).

The components that make up the SA were provided by the engineering team and are
presented in Table 5. Based on SAO entities, these components were modeled in OWL,
detailing their characteristics, properties and relationships with the physical process of the
system. Each component has a specific set of properties, which includes maximum and
minimum values, and the related units of measurement, which need to be properly defined.

Each component type has a set of technical characteristics provided by their manufacturers
(available on data sheet and manuals), which represent its capabilities. These data properties
will be fulfilled with the numerical values of each capability of the components of the
architecture to be modeled, thus enabling semantic evaluations to be carried out.

After declaring the data properties of the ProVANT 4.0 components, the individual
modeling of the components and the system begins. Each created individual contains three
definitions field-modeled based on SAO declarations: types, object properties assertions and
data properties assertions, as presented in Figure 4. Types define the classes that the
components belong to. In this case, ProVANT 4.0 has a list of types to describe generic UAV
characteristics, by drone ontology, such as fuselage, UAV category and hardware components
(sensors and actuator). Object properties assertions follow the individuals’ relationships. The
modeling of the individual that represents the ProVANT 4.0 architecture and its components
is carried out with the declaration of the object properties assertions of SAO, where each
component was previously modeled, also as an individual, and declared in the architecture.

An example of modeling the AXI 2418 brushless motor is shown in Figure 5. This
component is classified as an electric motor in drone ontology and a device in SAO. Among

The systems
architecture
ontology

ACI

Qty Component Type Description/functionality
2 STM32F767Z1 Development Development board with STM32F767Z1
board microcontroller
1 JetsonTx2 Development Development board with artificial intelligence
board application
1 Navio 2 Autopilot HAT Autopilot Hw composed of 2 x IMU, 1 x GPS, 1 x
barometer
1 ADIS164890 IMU Principal, precise, and accurate inertial measurement
unit to provide data to a system
1 3DR Pixhawk Airspeed Pitot tube A wind speed sensor
1 MB2530 IRXL- Sonar Sonar sensor to provide a distance data by reflection
MaxSonar-CS3 measurement
1 UBLOX NEO-M8T GPS Global positioning system, a sensor that provides

2 Flat Maxon motor
brushless EC 45

2 Maxon controller
ESCON 36/3

2 Maxon sensor Encoder
MILE, 512

6 Hitec D145SW Digital
HV

2 AXI 2830/10 V2 LONG
2 Mezon 160 ESC

1 Turnigy iA6C PPm/

Brushless motor
ESC

Encoder
Servo-motor

Brushless motor
ESC

Radio receiver

position data to system
Brushless motor used to provide tilt VTOL capability

n electronic speed control to brushless motors for
VTOL capability

Type of mechanical motion sensor that creates a digital
signal from motion

Servo motor(device) used to control UAV wing
movements

Brushless motor used for propulsion engines of UAV.
Electronic speed control for brushless motor of
propulsion engines

Radio transceiver device used to receive and transmit

SBUS data from UAV and control base on the ground
1 Battery management Energy control System used to control the current consumption and
system (BMS) system charging battery by solar panels in UAV
1 Max3232 RS232/UART UART converter ~ Device converter of RS232 bus communication used to
interface compatibility between components
2 KNACRO RS422 to UART converter ~ Device converter of RS422 bus communication used to
Table 5. TTL UART interface compatibility between components
ProVANT 4.0 4 LIFE 1500mah 25C 3S Power supply Set of components that provide power source to the
hardware components system (battery pack)
Object property assertions = hasDevice Mezon160E SC-unit2
Composite - ice MaxonC ON36/3 B hasDevice HitecD145SWDigitalHV-unit6

Figure 4.
OWL individual of
Provant 4.0 system

hasActuator exactly 8 Actuator
hasCategory exactly 1 VTOLCraft

= hasProcessor Nucleo-1767z-umt2

ine exactly 8
hasFuselage exactly 1 Cabin
hasFuselage exactly 1 ConstantSection
hasFuselage exactly 1 FrameKit
hasFuselage exactly 1 Nose
hasFuselage exactly 1 Tail
hasPlatform exactly 3 Platform
hasSensor exactly 1 AirSpeed
hasSensor exactly 1 GPS
hasSensor exactly 1IMU
hasSensor exactly 1 Sonar
is_a exactly 1 UAV
System

B hasDevice HitecD145SWDigitalHV-unit5

B hasDevice AXI2830/10V2LONG

mm hasDevice HitecD145SWDigitalHV-unit3

= hasComponent JetsonTx2

B hasDevice MB2530IRXL

== hasProcessor Nucleo-f767zi

B hasDevice AXI2830/10V2LONG-unit2

- ice F 45-unit2
i hasComponent Nucleo-f767zi-unit2

== hasDevice ADIS164890

== hasComponent HitecD145SWDigitalHV-unit3
mmhasDevice HitecD145SWDigitalHV

= hasComponent MB2530IRXL

= hasComponent HitecD145SWDigitalHV-unit5

mm hasProcessor JetsonTx2

M hasDevice HitecD145SWDigitalHV-unit4
B hasDevice Max3232

B hasDevice HitecD145SWDigitalHV-unit2
== hasComponent Nucleo-f767zi

F 45
B hasComponent HitecD145SWDigitalHV-unit2
== hasComponent HitecD145SWDigitalHV-unit4
= hasDevice MaxonControllerE SCON36/3-unit2
B hasComponent HitecD145SWDigitalHV-unit6
B hasDevice UBLOXNEO-M8T

B hasDevice Mezon160ESC-unit1

. hasC

MaxonC ON36/3

the object properties, hardware characteristics were defined, such as PWM communication
port, power consumption properties, period and mass. The data assigned to the properties are
presented in the data property assertions.

In total, the ontology has 1219 axioms, 696 logical axiom, 129 classes, 133 object property,
34 data property, 86 individuals and 47 annotation property. From the entities of the OWL
model, reasoners pallet of the Protegé tool were applied to analyze inconsistencies and
inferences between the components of the architecture, physical process and quality
attributes such as performance, behavior, traceability and support to designers for
identifying impacts in architectural components change.

5.2 Model transformation: OWL to AADL

After modeling, in OWL, the data properties and individual that represent the ProVant
systems and their components, the designer uses the OWL2AADL transformation tool
developed in this work.

The tool is an OSATEZ plugin that performs the process of transforming OWL models to
AADL, as presented in Section 4. The process is based on MDE concepts, where, from the
metamodels of the input (OWL) and output (AADL), a set of transformation rules proposed in
the transformation engine are performed. The tool reads the OWL file and processes the
relationship with OWL entities to AADL elements, generating two AADL model files
containing the property set and the architectural model. These two generated files contain the
minimum AADL structure necessary for modeling the system and carrying out evaluations
and analysis in OSATE2.

The generated SAO AADL property set file is based on OWL data properties declared
with the definitions presented in Table 3 from the transformation engine process. The SAO
AADL property set file follows the AADL structure declaration, which defines the data type,
unit of measure, maximum and minimum values and capability name. A part of the SAO
property set file is shown in Listing 1. In total, 42 lines of code were automatically generated,
enabling the modeling of properties of AADL components of the ProVant SA.

The second file generated by the tool is the OWL2AADL package, which contains the
AADL components of the architecture, resulting from the transformation process of the OWL
individuals. OWL model input provide 83 individuals, including the ProVANT architecture,
component features and library candidate input. In total, the OWL2AADL output file creates
74 AADL components, represented in 409 automatically generated command lines.

The number of AADL components generated in the transformation was smaller than the
number of OWL individuals because there were individuals not directly related to the types of
components. In total, nine individuals representing the section type were used to build the
component features. Regarding outstanding space limitations, in Listing 2, we show some
AADL components that make up the Provant 4.0 SA, generated using the OWL2AADL tool.

OWL individuals OWL Object property OWL Data properties

Description: AXI2814 HISCL POpeILY RSSOITO) == Rpm_per_Volt "1100 RomV"
B "has property' Power_Consume W Mass 67 g"AAxsd:double

Type

) W="has property’ Torque == Dispatch_Protocol "Periodic™
De\nc? . = hasPort PWM_bus == Power_Consume "29.28W"
ElectricalEngine = has property’ Period i Device_Functionality "BrushlessMotor”
B ‘has property’ Mass B Period “50 ms"

B hasTorque "3 Nm"

(a) (b) (©)

The systems
architecture
ontology

Figure 5.
OWL individual
AXI2814
brushless motor

ACI

Listing 1.

1 property set SAO is

2 BatteryCapacity Units: type units(Watt);

3 BatteryCapacity Min : constant aadlinteger units SAO:BatteryCapacity Units => 0;

4 BatteryCapacity Max : constant aadlinteger units SAO:BatteryCapacity Units => 1000;

5 BatteryCapacity_Range : type aadlinteger SAO:BatteryCapacity Min .. SAO:BatteryCapacity Max units SAO:
BatteryCapacity Units;

6 BatteryCapacity : BatteryCapacity Range applies to (bus, device, memory, processor);

7 Mass_Units: type units(g);

8 i constant aadlreal units SAO:Mass_Units => 0;

9 Mass_Max : constant aadlreal units SAO:Mass_Units => 2000;

10 Mass_Range : type aadlreal SAO:Mass_Min .. SAO:Mass_Max units SAO:Mass_Units;

11 Mass : Mass_Range applies to (device, memory, processor, system);

12 Power_Consume_Units: type units(Watt);

13 Power_Consume_Min : constant aadlinteger units SAO:Power_Consume_Units => 0;

14 Power_Consume_Max : constant aadlinteger units SAO:Power_Consume_Units => 10000;

15 Power_Consume_Range : type aadlinteger SAO:Power Consume_Min .. SAO:Power_Consume_Max units SAO:Power_Consume_Units;

16 Power_Consume : Power_Consume_Range applies to (device, memory, processor, system);

31 Accelerometer_Accuracity Units: type units(mg/sqrHz);

AADL mOdel 32 Accelerometer_Accuracity_Min : constant aadlinteger units SAO:Accelerometer_Accuracity_Units => 0;
generated by 33 Accelerometer_Accuracity _Max : constant aadlinteger units SAO:Accelerometer_Accuracity Units => 100;
. 34 Accelerometer_Accuracity Range : type aadlinteger SAO:Accelerometer_Accuracity_Min .. SAO:Accelerometer_Accuracity Max
OWL2AADL plugln units SAO:Accelerometer_Accuracity_Units
35 Accelerometer_Accuracity : Accelerometer_Accuracity_Range applies to (device, system);
package OWL2AADL
public
system implementation ProVANT_4_0
subcomponents
MaxonControllerESCON363 : device MaxonControllerESCON363;
MaxonControllerESCON363-unit2 : device MaxonControllerESCON363-unit2;
MEZON160ESC-unit2 : device MEZON160ESC-unit2;
MEZON160ESC : device MEZON160ESC;
Nucleo-f767zi-unit2 : processor Nucleo-f767zi-unit2;
Nucleo-£f767zi : processor Nucleo-£f767zi;
JetsonTx2 : processor JetsonTx2;
HitecD145SWDigitalHV-unit6 : device HitecD145SWDigitalHV-unité6;
HitecD145SWDigitalHV : device HitecD145SWDigitalHV;
AXI2830/10V2LONG device AXI2830/10V2LONG;
AXI2830/10V2LONG-unit2 device AXI2830/10V2LONG-unit2;
Max232 : device Max232;
MB2530RXL : device MB2530RXL;
FlatMaxonBrushlessEC45-unit2 : device FlatMaxonBrushlessEC45-unit2;
FlatMaxonBrushlessEC45 : device FlatMaxonBrushlessEC45;
KNACRORS422-unit2 : device KNACRORS422-unit2;
3DRPixhawkAirSpeed : device 3DRPixhawkAirSpeed;
UBLOXNEO-M8T : device UBLOXNEO-MS8T;
properties
SAO:BatteryCapacity => 3000 mah;
Listing 2. SAO:flightDuration => 40 minutes;
AADL model SAO:MaxFlightRange => 20 km;
generatedby B SAO:paylzagCapacity => 6 Kg;
OWL2AADL plugin end Proyh A0

end OWL2AADL;

After the OWL2AADL tool generates the AADL models and property set from individuals’
representation, it is possible to open these files in OSATE2 and thus perform instances and
analyses of the architecture through the development of plugins. This allows us to carry out
multiple analyses related to the impact of quality attributes and characteristics.

6. Conclusions and future work

In this work, we proposed an SAQ, aimed at representing semantically the SA of CPS,
providing terminologies, vocabulary and concepts and identifying the relationships between
hardware, software and system components, with a focus on implementation. SAO can be
reused in other domain ontologies to represent the details of the SA. We conducted a study of

previous works that have addressed this issue, with the intention of using ontology-based
benefits (high abstraction modeling) and AADL design to represent SA models.

We also developed a tool for transforming OWL models into AADL in order to use
ontologies in a specific domain to generate an architectural model of the system. We presented
an example of application in the aerospace domain with OWL modeling to demonstrate the
capacity of details about description, objects and data properties that support the
transformation process to an AADL model with a property set and architecture file generation.

For future work, as a wide variety of related ontologies use SA components, a study of
semantic rules will be performed, seeking alignment with the W3C standard module.
Ontology-based design provides a rich knowledge base, including the physical process,
network and computational parts of CPS, which can be used to support SA design by a
transformation model to create a large set of library components, a property set and an
architectural model in order to evaluate the system’s capability and implementation.

Note
1. https://github.com/diegosales/ OWL2AADL

References

1. Jaakkola H., Thalheim B. Architecture-driven modelling methodologies. In: Information Modelling
and Knowledge Bases XXII. 10S Press; 2011. p. 97-116.

2. Hause M, et al. The SysML modelling language. In: Fifteenth European Systems Engineering
Conference, 9; 2006. p. 1-12.

3. Feiler P.H,, Lewis B.A., Vestal S. The SAE Architecture Analysis & Design Language (AADL) a
standard for engineering performance critical systems. IEEE; 2006. p. 1206-211.

4. de Saqui-Sannes P., Hugues]. Combining SysML and AADL for the design, validation and
implementation of critical systems. ERTS2. 2012: 117.

5. Gruber TR, ef al A translation approach to portable ontology specifications. Knowl Acquisit.
1993; 5(2): 199-220.

6. Vanherpen K., Denil], David I, De Meulenaere P., Mosterman P.J., Torngren M., Qamar A.,
Vangheluwe H. Ontological reasoning for consistency in the design of cyber-physical systems. In:
2016 1st International Workshop on Cyber-Physical Production Systems (CPPS). IEEE; 2016.
p. 1-8.

7. Herzig SJ., Qamar A., Paredis CJ.. An approach to identifying inconsistencies in model-based
systems engineering. Proc Comp Sci. 2014; 28: 354-62.

8. Torngren M., Qamar A., Biehl M, Loiret F., El-Khoury]. Integrating viewpoints in the
development of mechatronic products. Mechatronics. 2014; 24(7): 745-62.

9. Bermudez-Edo M,, Elsaleh T., Barnaghi P., Taylor K. IoT-Lite: a lightweight semantic model for
the Internet of Things. In: 2016 INTL IEEE conferences on ubiquitous intelligence & computing,
advanced and trusted computing, scalable computing and communications, cloud and big data
computing, internet of people, and smart world congress. [EEE; 2016. p. 90-7. available at: uic/atc/
scalcom/cbdcom/iop/smartworld.

10. Olszewska]I, Barreto M., Bermejo-Alonso J., Carbonera J., Chibani A., Fiorini S., Goncalves P.,
Habib M., Khamis A., Olivares A., et al Ontology for autonomous robotics. In: 2017 26th IEEE
International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE;
2017. p. 189-94.

11. Janowicz K., Haller A. Cox, et al SOSA: A lightweight ontology for sensors, observations,
samples, and actuators.] Web Sem. 2019; 56: 1-10.

12. Uschold M., Griininger M. Ontologies: Principles, methods and applications. Knowl Eng Rev.
1996; 11.

The systems
architecture
ontology

https://github.com/diegosales/OWL2AADL
http://uic/atc/scalcom/cbdcom/iop/smartworld
http://uic/atc/scalcom/cbdcom/iop/smartworld

ACI

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

Fernandez M., Gomez-Perez A., Juristo N. Methontology: from ontological art towards ontological
engineering. In: proceedings of the AAAI97 spring symposium series on ontological engineering,
Stanford, USA; 1997. p. 33-40.

Goémez-Pérez A., Fernandez M., De Vicente A. Towards a method to conceptualize domain
ontologies. In: ECAI9% Workshop on Ontological Engineering. Budapest; 1996. p. 41-51.

Noy N.F. McGuinness D.L., et al Ontology development 101: A guide to creating your first
ontology. Stanford knowledge systems laboratory technical report KSL-01-05 and . . .; 2001.

Feldmann S, Herzig SJ., Kernschmidt K., Wolfenstetter T., Kammerl D., Qamar A, Lindemann U,
Kremar H., Paredis CJ., Vogel-Heuser B.. Towards effective management of inconsistencies in model-
based engineering of automated production systems. IFAC-PapersOnLine. 2015; 48(3): 916-23.

Balduccini M., Griffor E., Huth M., Vishik C., Burns M., Wollman D. Ontology-based reasoning
about the trustworthiness of cyber-physical systems; 2018.

Clements P.C. A survey of architecture description languages. In: Proceedings of the 8th
international workshop on software specification and design. IEEE; 1996. p. 16-25.

Parsia B., Patel-Schneider P., Motik B. OWL 2 web ontology language structural specification and
functional-style syntax. W3C, W3C Recommendation; 2012.

Na H.-S, Choi O-H, Lim J-E. A Method for Building Domain Ontologies based on the
Transformation of UML Models. In: Fourth International Conference on Software Engineering
Research, Management and Applications (SERA’06); 2006. p. 332-38. doi: 10.1109/SERA.2006.4.

Trinkunas J., Vasilecas O. Ontology transformation: From requirements to conceptual model.
Scientific Papers. Comp Sci Inform Technol. 2009; 751: 52-64. University of Latvia.

Novacek J., Viehl A., Bringmann O., Rosenstiel W. Ontology-based Requirements Transformation.
In: 2019 International Symposium on Systems Engineering (ISSE); 2019. p. 1-8. doi: 10.1109/
ISSE46696.2019.8984265.

Wardhana H., Ashari A, Sari A. Transformation of SysML Requirement Diagram into OWL
Ontologies. Int] Adv Comp Sci Appl. 2020; 11. doi: 10.14569/IJACSA.2020.0110415.

S. AS5506. Architecture analysis and design language (aadl). Embedded Computing Systems
Committee. 2004. SAE.

Behjati R, Yue T., Nejati S, Briand L., Selic B. Extending SysML with AADL concepts for
comprehensive system architecture modeling. In: European Conference on Modelling Foundations
and Applications. Springer; 2011. p. 236-52.

Brun M, Faugere M., Delatour J., Vergnaud T. From UML to AADL: a Need for an Explicit
Execution Semantics Modeling with MARTE. In: Embedded Real Time Software and Systems
(ERTS2008); 2008.

Goncalves F.. Integrated Method For Designing Complex Cyber-Physical Systems. PhD thesis.
Universidade Federal de Santa Catarina; 2018.

Bailin S.C., Hodgson R, Keller PJ. Large-Scale Knowledge Sharing for NASA Exploration Systems.
Feiler P. The Open Source AADL Tool Environment (OSATE). Technical Report. Carnegie Mellon
University Software Engineering Institute Pittsburgh United. . .; 2019.

Martin-Lammerding D., Cérdoba A., Astrain].J., Medrano P., Villadangos J. An Ontology-Based
System to Collect WSN-UAS Data Effectively. IEEE IoT J. 2021; 8(5): 3636-52. doi: 10.1109/JI0T.
2020.3023168.

Corresponding author
Diego Camara Sales can be contacted at: diegocsales@gmail.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

https://doi.org/10.1109/SERA.2006.4
https://doi.org/10.1109/ISSE46696.2019.8984265
https://doi.org/10.1109/ISSE46696.2019.8984265
https://doi.org/10.14569/IJACSA.2020.0110415
https://doi.org/10.1109/JIOT.2020.3023168
https://doi.org/10.1109/JIOT.2020.3023168
mailto:diegocsales@gmail.com

	The systems architecture ontology (SAO): an ontology-based design method for cyber–physical systems
	Introduction
	Related works
	Adopted design methodology
	OWL model transformation to AADL
	Case study
	ProVANT 4.0 OWL model
	Model transformation: OWL to AADL

	Conclusions and future work
	Note
	References

