Index

Abiotic factors, 32	Apple Siriis, 2
Accessibility, 251–252	Artificial general intelligence (AGI), 2
ACO. See Ant Colony Optimisation	Artificial intelligence (AI), 1, 5, 19, 34,
(ACO)	44, 70, 98, 172–173, 190,
Adaptive neuro-fuzzy inference system	192, 196, 212, 223, 234, 239,
(ANFIS), 72	241
Adsorption, 56–57, 60–62	accessibility, 251–252
elucidation of, 56	advantages of, 4–5
isotherm parameters, 56	in applied sustainability, 9–10
kinetic parameters, 56	automated and faster decision
misinterpretations of, 56	support, 5
multicomponent, 60	capabilities, classification of, 2
nature-inspired optimisation and,	in Chemical, Environmental and
57–60	Energy Engineering
single-component, 60–61	(CEEE), 7–8
Advanced Persistent Threats (APT)	in civil engineering, 8–9
detection system, 115	colouration, 262–266
Advanced public transport	complex problem solving, 5
management, 86–87	definition of, 2–3
AGI. See Artificial general intelligence	disaster response, 251
(AGI)	electrical engineering, 5–6
Agriculture, 11, 30, 198, 247–248, 251	electronic engineering, 5–6
climate-smart, 37	enterprise development, 9–10
environmental effect of, 33–34	equitable and ethical policymaking,
fertilizers in, 36–37	253–254
irrigated, 32	error reduction and continuous
in Mauritius, 201–203	enhancement, 5
precision, 32–33, 159, 165	fabric manufacturing, 260–262
smart, 162	finishing industry, 262–266
sustainable, 159, 251	functionalities, classification of, 2–3
AI. See Artificial intelligence (AI)	household plastic consumption, 45,
AlphaGo, Google, 2	49, 51
ANN. See Artificial neural network	Internet of Energy (IoE) and,
(ANN)	102–103
Anonymity, 114	machine learning (ML), 3
Ant colony, 56–57	in mechanical engineering, 6–7
Ant Colony Molecular Simulation, 58	mobility, 252
Ant Colony Optimisation (ACO),	plastic waste, 50
57–58	potential impacts of, 248
· · · · · · · · · · · · · · · · · · ·	r 3 to 1111 1111 part to 01, 210

poverty reduction, 251	natural bamboo, durability of,
prediction capability and, 237–238	224–225
for public welfare, 252–253	as prediction model, 172–173
social good, 246	types of, 224
social issues, 251–252	Artificial super intelligence (ASI), 2
supply chain management (SCM),	ASHRAE-55 standard, 172–173
236–238	ASI. See Artificial super intelligence
supply chain optimisation problems,	(ASI)
238	Assessment, 8, 86, 88–89, 186,
for sustainability, 250–251	189–190, 208, 223–224
synergy, 161–162	Atmospheric aerosols, 214
telecommunications engineering,	Atmospheric corrosion, 208
5–6	Auditability, 114
textile manufacturing, 258–262	Augmentation, 115
threats, 254	Authenticity, 115
types of, 2–3	Automation, 1–2, 6, 19, 88, 262
United Nations Sustainable	blockchain, 115
Development Goals (UN	for Industry 4.0, 198–199
SDGs) and, 10–11	Internet of Energy (IoE), 98,
utilisation of, 88–89	105–106
waste collection, 251	irrigation system, 32–33
waste management, 49	repetitive and hazardous task, 4-5
in wastewater treatment, 74–75	robotic process automation (RPA),
water quality and, 72-73	198
water sector and, 71–72	robotics and, 198-199, 202-203
in water treatment, 73–74	self-operating systems and, 110
yarn manufacturing, 259–260	
Artificial neural network (ANN), 5-6,	Backpropagation training algorithm,
10, 50, 83–84, 86, 198, 212,	213–214
223–224, 226–227, 260	Bamboo, 227
applications of, 71, 86–87	composites, artificial neural
architecture, 224	network, 225
bamboo-based composites,	in construction, 222–223
durability of, 225	durability, artificial neural network,
bamboo-based structures, durability	224–225
prediction of, 228	durability, factors affecting,
bamboo-reinforced concrete beams,	221–222
durability of, 225–226	durability prediction, artificial
bee colony optimisation (BCO), 59	neural network, 228
bus schedules, optimisation of, 87	mechanical properties of, 222
computer vision system with, 261	reinforced concrete beams, artificial
corrosion models, 212-213	neural network, 225–226
efficiency of, 212–213	sustainable traits, 220
energy disaggregation, 102	Bamboo fibre composites (BFC), 225
expert systems and, 35	Bamboo-wood composites (BWC), 225
model road network, 89	Bard, 235

Bayesian regularisation algorithm, 102	Climate change (CC), 6–8, 30, 32–33,
BCO. See Bee Colony Optimisation	70–73, 90–91, 172, 175, 186,
(BCO)	209, 220, 250
Bee, 57	adaptation and mitigation, 184
Bee Colony Optimisation (BCO), 59	circular economy (CE) and,
Big data, 98	187–188
Bioclimatic design methodology,	complexities of, 185
173–175	corrosion kinetics, 208
Biotechnology, 33-34	impacts of, 184–185
Biotic factors, 32, 221	Internet of Energy (IoE), 98
Blockchain, 165, 196–197	Internet of Things (IoT), 158
advantages, 115	Mauritius, 202–203, 251
anonymity, 114	SDG 9, 214–215
auditability, 114	SDG 13, 214, 220–221
characteristics of, 114	Climate resilience, 185
decentralisation, 114	Co-design, 187
Industry 4.0, 110–112, 115,	Colouration, 262–266
117–118	Comfort indices, 147–148
Internet of Energy (IoE), 105	adaptive model, 147
persistency, 114	Fanger's PMV model, 147–148
real-time systems, 115–117	Predicted Percentage of Dissatisfied
technology, 112–115	(PPD), 148
time reduction, 114	Tropical Summer Index (TSI), 148
transactions, 113	Community engagement, 184–187,
transparency, 114	190, 192
United Nations Sustainable	Competitiveness, 158, 241–242
Development Goals (UN	Computer vision, 49
SDGs), 117–118	Conference of Parties (COPs), 184
Blockchain ledger (BCL), 114	Contaminants, 56, 72, 74–75, 209
BREEAM, 172	Convolutional neural networks
Building energy management systems	(CNNs), 102, 224
(BEMS), 103–104	Corrosion kinetics, 208
~ ~ ~	Corrosion phenomena. See also
Case-based reasoning (CBR), 89	Corrosion prediction,
ChatGPT, 235	207–208
Chi-square (x^2) , 57–58	atmospheric, 208
Circular economy (CE), 6, 9, 11, 49,	gaseous pollutants, 209–210
186–188, 200, 202–203	marine aerosols, 208–209
Circular homes concept/adaptation,	relative humidity (RH), 208
Mauritius, 188–192	Corrosion prediction
artificial intelligence (AI),	conventional methods of, 210–212
190–192	machine learning techniques in,
energy dimension, 188-189	212–214
materials dimension, 189–190	United Nations Sustainable
water dimension, 189	Development Goals (UN
Civic Amenity Centres (CAC), 19	SDGs), 214–215

COVID-19 pandemic, 110, 196–197, 234	bamboo, 221–222 bamboo-based composites, 225
Crop yields, 30	bamboo-reinforced concrete beams,
Curtain control, 177	225–226
Cyber-Physical Production Systems	environmental, 118–119
(CPPS), 111	natural bamboo, 224–225
Cyber-physical systems (CPS), 111	natural composites, 226–227
Cybersecurity, 103, 110, 201	prediction of, 223–224
	Dynamic image analysis (DIA), 73–74
Data loggers, 73	Dynamic light scattering (DLS), 73–74
Data mining (DM), 89–90	
Decentralisation, 111, 114	Eco-Warriors, 24
Decision trees (DTs), 46–47	Education, 11, 46, 125–126, 158, 185,
Deep blockchain framework (DBF),	201–202, 234, 249
110–111	Electric vehicle (EV), 104–105
Deep Blue system, IBM, 2	Electronic fare payment, 87
DeepFakes, 254	Elephant herd, 56–57
Deep learning (DL), 3	Elephant herd optimisation (EHO), 60
Deep transfer learning (DTL), 115	Emergency systems, 85–86
Democracy, 246–247	Energy disaggregation, 102
Device to Device (D2D) transmission,	Energy efficiency, 6, 101, 162, 185–186,
101	198
Digitalisation, 201	Energy management, 104, 163
Digital supply chains (SCs), 238, 240	Energy optimization (AU: The term
Digital transfer textile printing	"Energy optimization" not
(DTTP), 266	listed in the text)
Digital transformation, 236	Energy storage system (ESS), 99–100
Disaster response, 251	Energy-water-materials nexus, 185–186
'Dose-response' equations, 211	Engineering, 73–74, 165, 185, 197, 224
Drainage, 34–36	agriculture, 198
biodrainage, 32	AI. See Artificial intelligence (AI)
control of, 36	Chemical, Environmental and
inadequate land, 32, 186	Energy Engineering
mole, 32	(CEEE), 7–8
recycle land, 30–31	civil, 8–9
run-water, 176	computer, 200
smart, 30–31	electrical, 5–6
soil water, 30–31	electronic, 5–6
stormwater, 71–72	mechanical, 6–7, 199
subsurface, 32	telecommunications, 5–6
surface, 32	Ensemble learning, 3
vertical, 32	Environmental monitoring, 158, 162
water reserve tank, 35	Environmental Product Declaration
Durability, 220	(EPD), 189–190
artificial neural network model for,	Evolutionary polynomial regression
224–227	(EPR), 74–75
	` "

Extended Producer Responsibility	Grand Canonical Monte Carlo
(EPR), 44–45	Molecular Simulation, 58
External shading control, 177	Green building rating systems, 172
	Greenhouse gas (GHG) emissions, 18,
Fabric manufacturing, 260–262	32, 186
Fanger's PMV model, 147–148	Grid maintenance, 102–103
Feed-forward neural network (FFNN),	
72	Habitats
Fertilization, 34–36	coastal, 251
Fertilizers	modelling, 250–251
biotechnology, 33–34	wildlife, 250
nanotechnology, 33–34	Healthcare, 11, 248–249
synthetic chemical, 30	artificial intelligence (AI), 248
	robotics, 198
Fibre saturation point (FSP), 222	
Finishing industry, 262–266	SDG 10, 160–161
First Industrial Revolution, 196	Heavy metals, 31
Fixed passive measures, 175–177	Household level, 45, 185–186, 188
local construction practices, 176	Household plastic consumption, 45–49
passive design, limitations of,	data collection, 45
176–177	data preparation and preprocessing,
Flood events, 73	45–46
Food, demand for, 30	decision trees (DTs), 47
Food safety, 159	feature engineering/selection, 46
Food security, 159, 234, 247–248	model development/selection, 46
Fourth Industrial Revolution. See also	networks, 48
Industry 4.0, 49, 111, 196	random forest (RF), 47
Fuzzy inference system (FIS),	regression analysis, 46
32–33	support vector machines (SVMs),
Fuzzy logic (FL), 90	48–49
	Human-machine interface (HMI),
5G, 6, 82–83	199–200
characteristics, 101	Human rights, 246–247
electric vehicle (EV), 104-105	Hybrid energy systems (HES), 100
features, 104	
frequency bands, 101	IBM's Watson supercomputer, 2
Internet of Energy (IoE), 100–101	Image classification, 71, 85
reduction in latency, 101	Indices, 127, 147–148
Gaseous pollutants, 209–210	Industrialisation, 31
Genetic algorithm (GA), 60, 71, 85, 91,	Industry 4.0, 49, 110, 186, 196, 258
103, 125, 132, 135, 146, 238,	automation, 198–199
264	blockchain, 110–111, 115, 117–118
Geographic Information Systems	customisation, 112
(GIS), 19	decentralisation, 111
Global positioning system (GPS), 19, 124	interoperability, 111 Mauritius, industrial context and
Good health and well-being, 159–160	barriers to, 201–202

modularity, 112 optimisation, 112 pushing research, 112 real-time capability, 112 robotics, 198–199 service-orientation, 112 virtualisation, 111 Information technology (IT), 82–83 Infrared spectroscopy, 20–21 Infrastructure, 5–6, 25–26, 82–83, 110, 186, 196, 252 civil, 210 degradation, 88–89	plug-and-play interface, 100 renewable resources in, 100 smart grid, 104 smart transport, 104–105 Internet of Things (IOT), 5–6, 19, 32–33, 72, 82–83, 98, 110, 116, 158, 236, 248 accident detection, 86 case studies, 163 challenges, 163–164 digital transformation and, 236 intrusion and privacy, 110–111 opportunities, 163–164
energy, 103, 105–106	rescue response, initiation of, 86
forecast, 88–89	Sustainable Development Goals
land transport, 90–91	(SDGs), 159–161
physical, 207–208	synergy, 161–162
resilient, 8–9, 220	temperature monitoring, 19
road, 88–89	Interoperability, 111 IoE. See Internet of Energy (IoE)
SDG 7, 138 SDG 9, 214–215	IOT. See Internet of Things (IOT)
sustainable, 220	Irrigation, 30–33, 189
traditional transport, 85	automated, 32–33
water, 71	control of, 36
Institute of Electrical and Electronics	fertilization and, 36–37, 159
Engineers (IEEE) 14-bus	smart, 34–36
system, 125, 129, 131–132,	
135, 137–138	K-nearest neighbour (K-NN), 72
Integer linear programming (ILP), 125, 131, 135	Knowledge-based systems (KBS), 89
Intelligent traffic management/control	Land. See also Landfill, 18, 72-73, 186
systems, 85	agricultural, 30-31
Intelligent Transport Systems (ITS),	drainage, 32, 38
162	food cultivation, 247
application of, 90–91	Mauritius, 30
for sustainability, 82–84	plastic leakage, 44–45
International Rice Research Institute	sustainable, 162
(IRRI), 36–37	transport infrastructure, 90–91
Internet of Energy (IoE), 98–99 artificial intelligence and, 102–103	Landfill, 20, 31 greenhouse gases (GHG), 186
building blocks, 99–100	household waste from, 189–190
Building Energy Management	in Mauritius, 18, 189–190
Systems (BEMS), 103–104	waste sent to, 49
electric vehicle (EV), 104–105	Laser diffraction, 73–74
5G communications for, 100–101	LEED, 172
industry and, 105	Limited memory, 2

Linearisation-based approaches, 56	M-farm, 36–37
Linear transformed method (LTFM),	Ministry of Environment, Solid Waste
57–58	Management and Climate
Livestock management, 159	Change (MOESWMCC), 19
Load-induced cracks, 221	Mobility, 85
	Models, 21, 45
Machine learning (ML), 102, 146, 158,	aqueous-phase adsorption, 56-57,
162, 197, 212, 223	60–62
advantages of, 4–5	artificial neural network (ANN),
artificial neural network (ANN),	220–224, 227–228, 265
223–224	deploy, 49
categories of, 3–4	development/selection, 46
corrosion prediction, 212–214	evaluate, 49
Datacolor, 264	forecasting, 102
data mining (DM), 89–90	hydraulic, 71
decision-making processes, 197–198	kinetic, 210
education, 249	K-M colour model, 265
error reduction and continuous	mathematical, 3
enhancement, 5	neural network, 265
grid maintenance, 102-103	one-size-fits-all, 246
household plastic consumption,	optimise, 48–49
45–49	phasor measurement units (PMUs)
neural networks, 48	124, 126, 135, 137–138
predictive analytics, 49	physics, 9
recycling, 49	prediction, 50, 57–58, 87, 172–173,
support vector machines (SVMs),	196, 223, 264
48–49, 103	quantitative assessment of, 146–150
sustainable solid waste	153
management, 18, 20, 22–26	species habitats, 250–251
X-Rite, 264	training and validation, 48
Manufacturing processes, 225, 257–259	water management, 70–71
Marine aerosols, 208–209	Modulable passive building elements,
Material Recovery Facilities (MRF),	177–178
19	Modularity, 112
MATLAB, 147, 149–150	Monte Carlo approach, 58
Mechatronics, 6, 172–173, 177–178	Multi Attribute Decision-Making
curtain control, 177	(MADM), 89
external shading control, 177	Multi-layer perceptron, 212–213
roof pooling, 178	Multilayer perceptrons (MLPs),
roof shading, 177–178	224
solar chimney, 178	Multiple-Input Multiple-Output
wind catcher, 178	(MIMO) antennas, 101
Medium Resolution Imaging	Municipal solid waste (MSW), 18
Spectrometer (MERIS),	
72–73	Nanotechnology, 33–34
Membrane bioreactor (MRR) 74-75	Narrowband-IoT (NR-IoT) 101

Nationally Determined Contributions (NDCs), 184	Phasor measurement units (PMUs), 102, 124, 126, 135, 137–139,
Nature-based solutions (NBS), 174	141
Nature-inspired optimisation	assumptions, 127
	bus observability index (BOI),
algorithms (NIOPAS),	•
56–57, 60	126–127
N-1 contingency criterion, 129, 134	implementing, 124
Network maintenance/budgets, 89–90	installation costs of, 124
Neural networks. See also Artificial	methodology for, 127, 132, 135
neural network (ANN), 21,	optimal placement of, 124–125
46, 48, 74–75, 223, 254,	placement rules, 126
258–259	pre-allocation of, 129
augmented decision-making	system observability redundancy
processes, 5	index (SORI), 126–127
back-propagation feed-forward, 10	zero-injection bus (ZIB), 126
model, 265	Plant protection products (PPPs), 32
Nitrogen, Phosphorus and Potassium	Plastic waste, 23, 44, 46–47
(NPK), 34	China, 47
Non-linear programming (NLP), 125,	computer vision, 49
132, 135, 137, 139, 141	household, 44
formulation of, 132–135	India, 47
IEEE 14-bus system, 135	machine learning, 45
Normalised different water index	Nepal, 46–47
(NDWI), 72–73	recycling, 49
Nutrient Expert System (NES), 36-37	segregation, 50
	storage, 50
On-site comfort testing, 146	support vector machines (SVMs),
Open Radio Access Network (RAN),	48–49
101	treatment, 50
Optimisation, 8, 87, 99, 197–198, 225	United Kingdom, 48
aqueous-phase adsorption model	Plug-and-play interface, 100
parameters, 56–57, 60–62	Poverty reduction, 251
Industry 4.0, 112	Power systems, 5–6, 98, 125, 138
network maintenance and budgets,	Power voltage instability monitoring,
89–90	102
phasor measurement units (PMUs),	Precision agriculture, 159
124, 126, 135, 137–138	Predicted Percentage of Dissatisfied
waste collection and transportation,	(PPD), 148
18	Prediction modelling, 50, 57–58, 87,
	172–173, 196, 223, 264
Parking management, 85	Predictive analytics, 49
Passive design, 173–177, 187–188,	
192	Radio frequency identification
Passive design methodology, 173–175	(RFID), 19, 186, 236
Persistency, 114	Random forest (RF), 47
Phase change material (PCM), 174	Reactive machines, 2
i mase change material (1 Civi), 1/4	reactive machines, 2

Real-time capability, 112	waste sorting, 49
Real-time operation management, 87	Roof pooling, 178
Real-time systems, 110–111, 115,	Roof shading, 177–178
117–119	Root means square error (RMSE),
Reconfigurable Manufacturing	57–58
Systems (RMS), 196–197	RStudio, 147, 149-150
Recurrent neural networks (RNNs),	
103, 224	Safety inspections, 88–89
Recycling, 7–8, 44–45, 49, 165, 188	Safety management/emergency
household plastics, 45, 47–48	systems, 85–86
Mauritius, 24	SDG 7. See Sustainable Development
nutrient, 32, 34	Goals (SDGs)
plastic waste, 23	Second Industrial Revolution, 196
waste sector, 19	Self-awareness, 2–3
Reduced inequalities, 160–161	Sequential Quadratic Programming
Regression analysis, 46	(SQP) algorithm, 132
Reinforcement learning (RL), 3	Service-orientation, 112
Relative humidity (RH), 208	Shallow learning, 3
Renewable energies, 99	Simulated annealing (SA), 89
Residual neural network (ResNet)	Simulated neural networks (SNN),
model, 116	223–224
Resilience, 8, 89, 114, 174–175, 185,	Small island developing state (SIDS),
196–197, 228, 234, 236	90–91, 202–203
climate, 185	Smart. See also specific types
food, 202	agriculture, 162
Industry 4.0, 196–197	appliances, 5
Response surface methodology (RSM),	bins, 19, 49
58	contracts and cryptocurrency,
RoadAI, 88	112–113
Road Asset Condition Assessment	factories, 112
System (RACAS), 88	fertilizer application, 30–31, 33–34,
RoadMetrics, 88	36–38
Road network condition management,	homes, 160, 198
87–88	predictive capabilities, 234–235
RoadPlus, 88	prosthetics, 160
Road user charging systems, 85	transport, 104–105
Robotic process automation (RPA),	upselling and cross-selling, 6
198	washing machines, 98–99
Robotics, 6–7	waste management technologies,
agriculture, 198	22–25
automotive industry, 198-199	Smart cities, 19–20, 110, 158
Industry 4.0, 198–199, 201–202	Internet of Things (IoT), 158
logistics and warehousing, 199	planning, 161
Sustainable Development Goals,	sensors, 253
199–200	SmartFactory, 111
utilisation of, 89	Smart grid, 98–99, 103–104

Smart solutions, 19	Sustainable Development Goals
Smart textiles, 258, 262, 267	(SDGs), 30–31, 44, 76, 82,
Smart waste management technologies	110, 197, 207, 210, 212,
applications of, 25	214–215, 246–247
for waste characterisation, 20–22	2, 158–159
for waste collection and transport,	3, 158–160
22–23	4, 158, 235
for waste segregation and recovery, 23–24	7, 5–8, 103–106, 110, 125–126, 158, 215
Social good, 245–254	8, 117
Soil moisture, 30–31	9, 214–215, 220
Solar chimney, 178–179	10, 158, 160–161, 235, 252
Solar radiation, 146–147, 174,	11, 18, 158, 161, 220, 252
177	12, 19, 24, 44, 220
Solid waste characterisation, 18, 20,	13, 21, 214, 220–221
22–23, 25	14, 250–251
Solid waste management (SWM),	15, 250–251
18	17, 184, 234
Sonar techniques, 21	artificial intelligence (AI), 10–11
Species habitats modelling, 250–251	blockchain use cases, in Industry 4.0
Supervised learning, 3	and, 117–118
Supervisory control and data	Chemical, Environmental and
acquisition (SCADA)	Energy Engineering
systems, 124	(CEEE), 7–8
Supply chain integration (SCI), 235	food supply chain in, 197
Supply chain megfation (SCI), 235 Supply chain management (SCM),	household plastic consumption, 51
116–117, 159, 165, 234–239,	intelligent traffic management and
251	control systems, 85, 90–91
Supply chains (SCs), 234, 238, 241	Intelligent Transport Systems (ITS),
Support vector machines (SVMs),	90–91
48–49, 70	Internet of Things (IoT) and,
Sustainability, 32–33, 49, 98, 172,	159–161
185–186, 199–200, 202–203,	transport-related, 83–84
220, 242	Sustainable waste management
agriculture, 159	(SWM), 18–19, 24, 186
artificial intelligence (AI), 250–251	Swarm intelligence–based algorithms,
in built environment, 8–9, 173,	60–61
185–186	Synapses, 213–214
cities and communities, 161	System observability redundancy index
energy and resource management,	(SORI), 126–127, 137
161	Systems (30K1), 120–127, 137
enterprise development and, 9–10	adsorption, 57–60
intelligent transportation systems	artificial intelligence (AI), 2, 246,
for, 82–84	249, 258
Internet of Things (IoT), 158, 162,	data loggers and telemetry, 73
164–165	drainage, 34–36
	·· ·· · · · · · · · · · · · · · · · ·

energy-saving, 98	Time reduction, 114
engineering, 1–2	Total inorganic nitrogen (TIN), 74–75
environmental, 8	Toyota's logistics, 241
fertilization, 34–36	Traffic engineering, 83–85, 90
IEEE 14-bus, 137	Traffic law enforcement, 85
infrastructure, 207–208	Trans-Africa HyrdoMeteorological
intelligent real-time, 110-111, 115,	Observatory (TAHMO)
117–119	project, 250
intelligent transportation, 81–82,	Transparency, 114
84–91	Tropical Summer Index (TSI), 148
	Tropical Summer findex (151), 140
Internet of Things (IoT), 158,	II A W-1:-1- (IIAW) 162
162–163	Unmanned Aerial Vehicle (UAV), 162
irrigation, 34–36	UN SDGs. See Sustainable
low-carbon, 5	Development Goals (SDGs)
machine learning (ML), 21	Unsupervised learning, 3
mechatronics, 172–173, 177	Urbanisation, 31
robotics and automated, 195,	
200–203	Virtualisation, 111
robotic waste sorting, 49	
smart agricultural, 32-33	Waste characterisation, 20–22
spatial, 22–23	Waste collection, 18, 251
water drainage, 30–31	bins, overflowing of, 19
zero-injection bus (ZIB), 126	optimisation of, 18, 49, 163
J	smart waste management
Telemetry systems, 73	technologies for, 22–23
Textile and apparel (T&A) industry,	Waste management, 7–8, 163
237	alternative, 18
Textile industry	artificial intelligence tools in, 49
artificial intelligence (AI) in, 258,	controlled facility, 18
262, 266	plastic, 50
colouration, 262–266	smart, 20–22
fabric manufacturing, 260–262	sustainable, 24
finishing industry, 262–266	Waste recovery, 23–24
in Mauritius, 9–10	Waste sector, 18–19
yarn manufacturing, 259–260	Waste segregation, 23–24
Theory of Mind, 2	Water distribution network (WDN),
Thermal comfort, 146–147, 149,	71
172–173, 175, 177–180, 192	Water quality, 70–71, 158, 165
analysis, 152	artificial intelligence (AI) and,
definition of, 146	72–73
Portugal, 146	irregularities in, 73
Thermal Sensation Vote (TSV) scale,	Water quality classification (WQC),
146–147	72.
Third Industrial Revolution, 196	Water quality index (WQI), 72
Threats, 254	Water sector, 71–72
Time-of-Wetness (TOW), 208	Wind, 100, 146, 221
1 mic 01- (1 cmcss (1 O W), 200	11110, 100, 170, 221

282 *Index*

catcher, 178
power generation, 5–6
solar radiation and, 146–147
speed, 153
thermal comfort, 150
velocity, 209
Window-to-Wall Ratio (WWR),
173–174

X-ray, 21

Yarn manufacturing, 259-260

Zero Hunger, 159 Zero injection bus (ZIB), 124–125 inclusion of, 128–129, 133–134 placement rules in, 126