Index

Activation function, 29-32, 37, 60
Active learning, 173-174
Ada. Boost. M1 algorithm, 166-167
Area under curve (AUC), 13-14, 118-119
Artificial intelligence (AI), 1, 2
Artificial neural network (ANN), 26
Augmented reality (AR), 53
Automatic interaction detection method (AID method), 139-143
Automatic relevance detection (ARD), 49
Average linkage, 157-158
Backpropagation
cost functions and training of neural networks using, 38-40
equations, 62
Bagging, 158-159, 161-165, 169
regularization through, 78
Basis expansion, 58-59
Basis function(s), 58-59
regression, 28, 31
Batch
gradient descent, 8-9
size, 8-9
Bayesian approach, 26
Bayesian neural networks, 49
Bias, 2, 69
bias-variance tradeoff, 68-70
Binary choice targeting model, 72
Binary classification, 3
Boosting, 158-159, 165-169
Bootstrap(ping), 158-161
aggregation, 159
Business-to-business setting (B2B setting), 118-119

Business-to-customer setting
(B2C setting), 118-119
Caravan insurance, 176
Chain-rule of calculus, 39, 63
Chaotic time series, 119
Chi Squared automatic interaction
detection method (CHAID method), 139-143
Chi-squared statistic, 140
Choice rules, 121-122
Choice-based conjoint analysis (CBC analysis), 122
Churn
modeling, 118-119
prediction, 54-57
Classification
models, 2-3
NN for, 37-38
performance assessment for classification tasks, 9-19
trees, 150-155
Classification and regression trees (CART), 143-155, 175-176
Classifier, 93
Clustering models, 156
Coefficients, 2
Collaborative-based recommendation system, 116-117
Complete linkage, 157-158
Composite functions, 36
Computational learning theory, 85-86
Confusion matrix, 12-13
Conjoint analysis, 124-125
methodology, 116
Connection weights, feature importance based on, 45-47

Consumer choice modeling, 121
Content-based recommendation system, 116-117
Convolutional neural networks (CNN), 2
Cosine similarity kernel, 130
Cost complexity
criterion, 181
pruning, 149-150
Cost function, 9
and training of machine learning models, 3-4
Cross-entropy cost, 4, 6, 19-20, 38, 41, 151-152
Cross-validation, 70-72, 80
Cumulative response curve, 15-17
"Customer-focused" approach of marketing, 116

Decision trees, 155
applications in marketing and sales, 171-176
bootstrapping, bagging, and boosting, 158-169
case studies, 176-179
decision tree-based methods, 139-140
early evolution of, 139-143
random forest, 169-171
and segmentation, 155-158
Default classification rule, 12-13
Dendrograms, 156, 158
Dependent variable, 2
Depth of network, 36
Descent, 9
Direct Marketing Educational Foundation (DMEF), 117-118, 173-174
Directional derivatives, 8
Distance to city center (DCC), 58
Dot product, 59, 91, 128
"Earnings before tax-to-equity ratio", 173-174

Empirical distribution, 5
Ensemble methods, regularization through, 78
Ensemble random forest approach, 175-176
Euclidean distance, 156-157
Euclidean norm, 91-92
Evolutionary local selection algorithm (ELSA), 52
Example-dependent costs, 175-176
Expectation, 69
Expected test error, 71-72
Explanatory variable, 2
Feature importance
based on connection weights, 45-47
based on partial derivatives, 49
measurement, 42-49
Feature selection, 75
Feature space, 94, 129, 143
First Order Conditions (FOCs), 132
Fivefold cross-validation, 71
Forward stagewise additive modeling process, 165-166

Gainsight and Survey Monkey company, 54
Gaussian distribution, 62
Gaussian errors, 38
Generalizability, 73
Generalization error, 9-10, 68
Gini coefficient, 17-19
Gini index, 151-152
Goodness-of-fit measure, 149-150
Gradient, 61
boosting, 168
with cross-entropy, 63
descent, 9, 61
gradient-based learning, 6-9
Gram matrix, 130
Greedy algorithm, 147-149, 155
Hard choices, 116-117
Hidden nodes, 31-32, 59-60

Hierarchical Bayesian method (HB method), 116
Hierarchical clustering, 156
Hit rate, 11-12
Hyperparameters, 66, 167
Hyperplanes, 88
margin between classes, 99-100
maximal margin classification, 101-106
optimal separating hyperplane, 99-106
separating, 88-89
Independent variable, 2
Inner product, 59, 91, 128
Intel's RealSense Vision Processor, 53
Internet Movie Database (IMDB), 116-117
"Inverted U" shape, 33-34
Irreducible error, 69
K-fold cross validation, 71
Karush-Kuhn-Tucker conditions, 132
Kernel(s), 94-98
kernel-based nonlinear classifier, 114
in machine learning, $90-99$
matrix, 130
as measures of similarity, 91-94
trick, 98-99
$\mathrm{k}^{\text {th }}$ degree polynomial kernel, 130
L_{1} regularization, 74-75
as constrained optimization problems, 75-76
weight decay in, 81
L_{2} regularization, 73-74
as constrained optimization problems, 75-76
weight decay in, 80-81
Lagrange multipliers, 131-132
Lasso, 73
Latitude of acceptance rule (LOA rule), 52, 121-122

Law of parsimony, 72
Lead qualification and scoring models, 52
Learning rate, 66
with cross-entropy function, 63
parameter, 7-8
Learning slowdown, 63
Leave-out-one cross-validation
(LOOCV), 71
Lift chart, 15-17
Linear activation function for
continuous regression
outputs, 40, 62-63
Linear regression model, 2-3
Log odds, 86, 127
ratio, 3
Log-likelihood, 19
Logistic regression, 3, 86
Logit leaf model (LLM), 175-176
Machine learning, 1-2
implementation, 1
industry applications, 1
kernels in, 90-99
Margin, 104, 130
width, 107
Maximal margin classification, 101-106
Maximum likelihood estimation (MLE), 4-6, 38
Maximum likelihood estimator, 19, 60-61
Mean squared error (MSE), 10, 58
Mini-batch gradient descent, 8-9
Misclassification costs, 175-176
Model distribution, 5
Monocentric land value model, 26-27
Multi-class classification, 37
Multicentric land value model, 27
Multilayer NNs, 36-37, 53
Multilayer perceptron (MLP), 175-176
Multinomial logit (MNL), 50-51

Natural language processing (NLP), 2, 53
"Net profit margin", 173-174
Neural interpretation diagrams (NID), 43-44
Neural networks (NN), 2, 25-26, 53
applications to sales and marketing, 49-54
case studies, 54-58
for classification, 37-38
cost functions and training of neural networks using backpropagation, 38-40
early evolution, 25-26
feature importance measurement and visualization, 42-49
model, 26-38
output nodes, 40-42
for regression, 28-37
Next Product To Buy (NPTB), 54
Non-compensatory choice rules, 52, 121
Non-convex region, 146
Non-parametric methods, 139-140
Nonlinear maps and kernels, 94-98
Norm, 91-92, 128
Online learning, 8-9
Optimal classifier, 114
Ordinary least squares regression
(OLS regression), 101
Out-of-bag observations, 163
Output nodes, 40-42
Overfitting, 66-68
Parameter norm penalty methods, 73-74
Partial derivatives, feature importance based on, 49
Percent correctly classified (PCC), 11-12, 124, 176
Perceptrons, 89
Permutation importance measure, 164

Pessimistic active learning (PAL), 173-174
Polynomial kernel, 114
Predicted mean squared error (PMSE), 126
Predicted MSE (PMSE), 10
Prediction rule, 143
Profile method for sensitivity analysis, 44-45
Propensity scoring model, 12-13
Prototypes, 173-174
Quadratic cost, 63
function, 76, 83
Radial basis function kernel (RBF kernel), 99, 130, 175-176
Radial basis kernel, 126
Radial kernel, 123
Random forest, 2, 139-140, 169-171
applications in marketing and sales, 171-176
Randomization approach for weight and input variable significance, 48-49
Receiver operating characteristics curve (ROC curve), 13-14
Recency, frequency, monetary value analysis (RFM analysis), 173-174
Rectified Linear Units (ReLU), 33
Recurrent neural networks (RNN), 2
Recursive binary partitioning, 145
Regression
cost complexity pruning, 149-150
greedy algorithm, 147-149
models, 2-3
NN for, 28-37
performance assessment for, 9-19
trees, 147-150
Regularization, 66, 72-78
through bagging and ensemble methods, 78
through early stopping, 77
through input noise, 76
through sparse representations, 77-78
Rent value
location vs., 125
prediction, 57-58
Response variables, $1-3$
Ridge regression, 73
"Root" node, 149-150
Sales and marketing
applications of NN to, 49-54
SVM applications in, 114-120
Sampling variability, 69
Satisficing rule, 52
Segmentation, 155-158
Segmentation, targeting and positioning (STP), 50, 155-156
Self-organizing feature maps (SOFM), 115
Separability, 109-110
Separating hyperplanes, 88-89, 127
Sequential binary programming (SBP), 173-174
Shannon's entropy, 151-152
Sigmoid activation function, 33
for binary outputs, 40-41, 63
Sigmoid function, 33, 36
Sigmoid kernel, 130
Similarity, kernels as measures of, 91-94
Slack variable, 107-109
Soft margins, 107
Softmax activation function for multiclass outputs, 42, 64
Softmax function, 37
Sparse representations, regularization through, 77-78
Sparsity, 75, 81-82
Stochastic gradient boosting algorithm, 169
Stochastic gradient descent (SGD), 8-9
Stopping rule, 148-149

Streaming data, 8-9
Sum of squares (SS), 147, 150, 181
cost, 4, 19
error cost, 38
Supervised learning models, 1
Supervised segmentation, 155-156
Support vector classifier, 106-114
Support vector clustering (SVC), 115
Support vector machine (SVM), 2, 85-86, 175-176
applications in marketing and sales, 114-120
case studies, 120-127
early evolution, 85-86
hyperplanes, 88-89
kernels in machine learning, 90-99
nonlinear classification using, 86-88
optimal separating hyperplane, 99-106
support vector classifier and, 106-114
Support vectors, 102
SVMauc technique, 118-119
Taiwan Ratings Corporation, 118-119
Target variables, 1-3
Test data, 9-10, 71
Test error, 9-10, 66, 68
Text analysis, 119-120
Text classification, 120
THAID, 139-143
Top decile lift, 17
Training error, 9-10, 66
Training of machine learning models, 1-9
cost functions and training of machine learning models, 3-4
gradient-based learning, 6-9
MLE, 5-6
regression and classification models, 2-3
Tree size, 149-150
Tree-based model, 175-176
"Trial-and-repeat" purchase models, 2 Weight decay, 72-78
True data distribution, 5, 71-72 in L_{1} regularization, 81 in L_{2} regularization, $80-81$
parameter, 74, 80, 150
Underfitting, 69
Units, 25-26
Universal approximation theorem, 33-34
Unsupervised segmentation models, 156

Weight(s), 2
vectors, 31
weight-based input importance method, 45
weighted additive rule, 52
Wine quality, 178
Wolfe Dual program, 106, 133
Variance, 69
Virtual reality (VR), 53
XOR problem, 113

