Index

ABI/INFORM databases, 25	LSS methodology to improving
Academic freedom, 47–48	service process in higher
Academic institution, 13–14	education, 192-214
Academic leadership, 44–45	of VOC in higher education,
authors' perspective, 20	138–139
changing world in twenty-first	Cause and effect analysis, 71–74, 206
century, 14–15	Certification for LSS, 6–7
characteristics and environment of	Challenges
academic leaders, 17–20	in deployment of LSS, 43, 45-46
future and need for leadership,	within Irish University's Grant
15–17	Application Process,
AlliedSignal, 2–3	104–106
Alternative hypothesis, 96	Change management, 18–20, 142
Alumni, 130–131	Characteristics of academic leaders,
Analysis of variance (ANOVA), 179	17–20
Assessment, 145	Coaching, 19
Attribute control charts, 84	Collaborative learning, 38
Awareness of Lean Six Sigma, 161–163	College of Agriculture and School of
	Veterinary Medicine
Bank of America, 3	(AVPC), 199
Barriers within Irish University's Grant	College of Business (COB), 70
Application Process,	"Common cause variation", 83–84
104–106	Communication, 19, 46
Benchmarking, 28	Constant improvement, 180
Big Data. See also Six Sigma Big Data	Consumerism, 132
(SSBD), 8, 171–172	Continuous improvement (CI), 103,
challenge, 172–173	141, 185
Six Sigma and, 175	strategy, 132, 134–135
'Black box' effect, 174	Control charts, 82–85
Box plot, 94–96	Correlation analysis, 78–80
Business case, 62	Cost of poor quality, 34
	Critical Customer Requirements
Capability maturity model, 145–146	(CCRs), 175
Case studies	Critical success factors, 32–33
DMAIC in HEI, 185–190	Critical-to-quality (CTQ)
DMAIC in improving library	characteristics, 5, 45
utilisation in HEI, 215–220	factors, 125–126, 132–133
of Lean Six Sigma maturity model,	items, 165–166
142–145	Cross-functional maps, 65

Customers, 49, 56–57, 126–128	Expression of interest (EOI), 117
alumni, 130–131	Factors 145 146
employees, 131	Factors, 145–146
employers, 130	Failure mode and effect analysis
government, 130	(FMEA), 91–94, 196
in Higher Education Sector, 128–131	Fishbone analysis, 188
	Fishbone diagram. See Cause and
parents of students, 129–130	effect analysis
students, 129	Fisher's exact test, 33
Cycle time, 69	Flow, 103
Data revolution, 171	General Electric (GE), 3, 23
Decentralisation of education, 16	Globalisation, 14–15
Defects, Overproduction, Waiting, Not	Goal statement, 63
utilizing talent, Trans-	Google Scholar, 25
portation, Inventory,	Government, 130
Motion, Excess processing	
(DOWNTIME processing),	Health Research Board (HRB), 105
86–87	Higher education (HE). See also Times
Define, Measure, Analyze, Improve,	Higher Education (THE),
and Control (DMAIC), 3,	126–127, 141, 199
62–63	case study of VOC in, 138–139
application, 185–190	Lean approaches in, 29–32
framework, 176	Lean Six Sigma tools for, 62–98
in HEI, 185–190	LSS approaches in, 32–36
in improving library utilisation in	RFs for implementation and
HEI, 215–220	deployment of LSS in, 54–59
key outcomes and lessons learning,	Six Sigma approaches in, 26–29
190	VOC in, 131–134
methodology, 23, 27–28, 215–220	Higher Education Authority (HEA),
Department of Education and Skills	104
(DES), 104	Higher education institutions (HEIs),
Deployment flowcharts, 65	45, 54, 62–63, 101, 126–127,
Design for Six Sigma (DFSS), 28–29	200–202
Design of Experiments (DoE), 179	DMAIC in increasing library
Detailed flowcharts, 65	DMAIC in improving library
Dewey Decimal Classification (DDC),	utilisation in, 215–220
218–219	Higher education sector (HES), 43
Employees 121	customers in, 128–131
Employees, 131	viewpoints, 43–51
Employers, 130	Histogram, 77–79
Engagement, 48 Estimated banefits, 63	Holistic improvement strategy and
Estimated benefits, 63 Experiential learning, 32	methodology, 7–8
Experiential learning, 32	Honeywell, 2–3

Human variation, 9	principles, 24
Hypothesis tests, 96–98	production system, 24
	Lean Six Sigma (LSS). See also Six
IEEE Explore databases, 25	Sigma (SS), 1, 2, 6, 24, 43,
Imbalanced workload, 204, 211–212	53, 61, 103, 141, 185
Improvement, 102–103	analysis of literature, 36–37
In-frame diagram, 91	approaches in higher education,
Initialization, 164–166	32–36
Innovation, 6	aspects, 2
Input-Process-Output (IPO), 186, 186	awareness and readiness,
Institutional involvement, 18	161–163
Intangible benefits, 63	case study findings, 142-145
International Journal of Productivity	conducting review, 26
and Performance	culture, 9
Management, 37	current state, 5–7
International Journal of Quality and	development of conceptual model,
Reliability Management, 25,	145–146
37	DMAIC methodology, 35, 196-214
Involvement, 20	future, 7–9
Irish Research Council (IRC), 105	history, 2–10
Irish University's Grant Application	implementation, 166–167
Process, challenges and	initialization, 164–166
barriers within, 104-106	literature review, 26–36
	maturity model, 141, 147
Kano analysis, 180	methodology, 24-26
Knowledge, 14–15	methodology to improving service
economy, 17	process in higher education,
Knowledge Transfer Partnerships	192–214
(KTPs), 130	planning review, 25
	preparation, 163–164
Language, 144–145	process view, 5
of change, 19	project management, 166–167
Lead time, 69	for public sector organisations, 5–6
Leadership. See also Academic	research methodology, 142-145
leadership, 18, 20, 108, 141	revised, 149
future and need for, 15–17	RFs for implementation and
mental models, 47-48	deployment of LSS in HE,
models, 18	54-59
Lean, 3-4, 23-24, 141	roadmap, 161–162
approaches in higher education,	standards for LSS certification, 6-7
29–32	sustaining, 8–9
learning academy, 30–31	sustenance, 167–168
management principles, 31	testing conceptual maturity model,
marriage, 4–5	148–149

Lean Thinking (LT), 1	<i>p</i> -value, 96–97
Levels, 145–146	Parents of students, 129–130
	Pareto analysis, 75-77, 216-218
MAIC, 2	Pay-per-click marketing (PPC
Man, Material, Machine, Methods,	marketing), 70
Measurement, and Mother	Performance of research grant
Nature (6 Ms), 73	applications, 103–104
Management by Objectives (MbO), 49	Phenomenological research approach,
Management commitment and	106
resources, 56	Plan Do Check Act model (PDCA
Manufacturing Extension Partner	model), 143
(MEP), 71	Postgraduate Mathematical
Market, 126	programmes market, 126
segments, 126	Pre-Award centres on campus: College
Master Black Belts (MBBs), 141	of Engineering (EPC), 199
Master of Business Administration	Predictive models, 172–173
(MBA), 27	Primary Investigators (PIs), 108
Mathematics programme, 126	Principle Investigators (PIs), 192
Mentoring, 19	Problem statement, 62–63
Milestones, 63	Process cycle efficiency (PCE), 206
Motorola, 2, 23	Process Improvement Unit (PIU), 144
Multi-criteria decision-making	Process map(ping), 65–66
methodology, 31–32	Product, Price, Place, Promotion,
6. 7	People, Process, Physical
Non-value added activities (NVA	Environment, and
activities), 199	Productivity (8Ps), 73
Null hypothesis, 96	Programme Governance, 166–167
71	Project
Objective Key Results (OKR), 49	charter, 62–64, 196
Objective-Setting and Review model	identification, 164–166
(OSaR model), 142	metric, 62
Observational data, 8	prioritisation, 164–166
Open innovation, 179	project-based learning, 33
Operational Excellence (OE), 1, 53, 56	resourcing, 18
linking operational excellence to	scope statement, 62
university's strategy, 57–58	selection, 18
OPEX. See Operational Excellence (OE)	timelines, 63
Opportunities for Improvement	title, 62
(OFIs), 188–189	types, 18
Organisational	Project team, 63
culture, 58	formation, 164–166
environment, 16	'Proposal Effort Score', 206–208
Out-frame diagram, 91	•

Risk priority number (RPN), 212-213

5-6 Root cause analysis (RCA), 73-75 Run charts, 80-82 Quacquarelli Symonds (QS), 101 World University Rankings, 103 Scatter plots, 78–81 Qualitative research, 142 Science Direct, 25 Quality Approaches in Education, 37 Science Foundation Ireland (SFI), 105 Quality assurance in HE, 49 Selecting Right People, 58–59 Quality function deployment (QFD), Service, 103 24, 137–138 Silo mentality, 46, 51 Six Sigma (SS). See also Lean Six "Random cause variation", 83–84 Sigma (LSS), 1, 4, 173, 179 Ranking schemes, 101 approaches in higher education, Rapid improvement events (RIEs), 143 26 - 29Readiness, 53-54 and Big Data principles, 175 for assessment, 145 challenges, 173 of Lean Six Sigma, 161-163 launch, 2–3 Readiness factors (RFs), 33, 53-54 marriage, 4-5 for implementation and deployment methodology, 23 Six Sigma Big Data (SSBD), 174 of LSS in HE, 54-59 managerial implications, 59 proposition, 173-181 Research and development (R&D), Social cognitive theory, 53–54 Specific, Measurable, Aggressive but Research funding, 106 Achievable, Realistic, and Research grant applications, 101 Time-bound (SMART), 63 challenges and barriers within Irish Spinouts, 15–16 University's Grant Sponsored Program Services (SPS), Application Process, 192 104-106 Standard operating procedures (SOPs), implications of study, 116 85-86, 219-220 key drivers, 102–103 Statistical hypothesis testing, 96 key findings, 107-116 Statistical process control (SPC), 181 Lean Six Sigma supporting, Statistical regression, 172–173 103-104 Structure of leadership, 20 Student Records and Examinations limitations of study, 116 methodology, 106-107 Office (SREO), 185–186 online survey results, 107-109 Student(s), 129 recommendations and directions. retention, 133 116-118 Succession plan, 9 semi-structured interviews, 109–116, Supplier-Inputs-Process-110-115 Outputs-Customers (SIPOC), 65-69, 199 Research grant awards, 107 Research-led universities, 102–103

Public sector organisations, LSS for,

Reward and recognition, 20

Surroundings, Suppliers, Systems,	University College Cork (UCC), 185
Service policy, and Skills	University of North Alabama (UNA),
(5 Ss), 73	70
Sustainability, 180	
of LSS, 7	VA ration. See Process cycle efficiency
Sustenance of LSS, 167–168	(PCE)
Swim-lane diagrams, 65–66	Value, 101, 103
	stream, 49
Takt time, 69	Value stream map(ping) (VSMs),
Tangible benefits, 63	68–71, 70
Team structure, 18	Value-added process time (VA process
Testing conceptual maturity model,	time), 199
148–149	Variable control charts, 84
TIM WOODS, 187–188	Vice Chancellor (VC), 144
Times Higher Education (THE).	Visionary leadership, 55–56
See also Higher education	Voice of the Customer (VOC), 5, 29,
(HE), 101	56–57, 125–126, 176–177,
University Impact Rankings, 103	196–197
University Rankings, 103	case study, 138–139
World Reputation Ranking, 103	current state, 131–132
Tools of Lean Six Sigma, 61–62	customers, 126–128
for higher education, 62–98	customers in Higher Education
Top-down flowcharts, 65	Sector, 128–131
Total Quality Management (TQM), 23	in HE, 131–134
Toyota Production System (TPS), 1,	stages to developing VOC strategy,
73–75	134–138
Training and development, 19	
Transcripts process, 188	Waste, 101, 103–104
	analysis, 86–90, 216
Unbalanced workload, 208	Web of Science, 25
Universities, 13, 17, 101	Whisker plot, 94
ranking, 101, 103	Work in process (WIP), 89, 211
strategy, 57–58	
university-wide surveys, 133	Xerox, 6